Global monitoring of soil animal communities using a common methodology

Authors

  • Anton M. Potapov University of Goettingen; Russian Academy of Sciences
  • Xin Sun Institute of Urban Environment Chinese Academy of Sciences
  • Andrew D. Barnes University of Waikato
  • Maria J. Briones Universidad de Vigo
  • George G. Brown Embrapa Forestry; Universidade Federal do Paraná
  • Erin K. Cameron Saint Mary’s University
  • Chih-Han Chang National Taiwan University; National Taiwan University
  • Jerome Cortet Université Paul-Valéry Montpellier
  • Nico Eisenhauer German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig University
  • Andre L.C. Franco Colorado State University
  • Saori Fujii Forestry and Forest Products Research Institute
  • Stefan Geisen Wageningen University & Research
  • Carlos Guerra German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig; Martin Luther University Halle Wittenberg
  • Konstantin Gongalsky A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
  • Jari Haimi University of Jyväskylä
  • I. Tanya Handa Université du Québec à Montréal
  • Charlene Janion-Sheepers University of Cape Town; Iziko Museums of South Africa
  • Kamil Karaban Cardinal Stefan Wyszynski University in Warsaw
  • Zoe Lindo University of Western Ontario
  • Jerome Mathieu Sorbonne Université
  • Maria Laura Moreno Universidad Nacional de Córdoba
  • Maka Murvanidze I. Javakhishvili Tbilisi State University
  • Uffe Nielsen Western Sydney University
  • Stefan Scheu University of Göttingen
  • Olaf Schmidt University College Dublin
  • Clement Schneider Senckenberg Society for Nature Research
  • Julia Seeber Eurac Research; University of Innsbruck
  • Maria Tsiafouli Aristotle University
  • Jiri Tuma Biology Centre of the Czech Academy of Sciences
  • Alexei Tiunov Russian Academy of Sciences
  • Andrey S. Zaytsev Russian Academy of Sciences
  • Frank Ashwood Forest Research, Northern Research Station
  • Mac Callaham USDA Forest Service
  • Diana Wall Colorado State University

DOI:

https://doi.org/10.25674/so94iss1id178

Keywords:

biogeography, ecosystem functioning, macroecology, soil fauna, soil biodiversity

Abstract

Here we introduce the Soil BON Foodweb Team, a cross-continental collaborative network that aims to monitor soil animal communities and food webs using consistent methodology at a global scale. Soil animals support vital soil processes via soil structure modification, consumption of dead organic matter, and interactions with microbial and plant communities. Soil animal effects on ecosystem functions have been demonstrated by correlative analyses as well as in laboratory and field experiments, but these studies typically focus on selected animal groups or species at one or few sites with limited variation in environmental conditions. The lack of comprehensive harmonised large-scale soil animal community data including microfauna, mesofauna, and macrofauna, in conjunction with related soil functions, microbial communities, and vegetation, limits our understanding of biological interactions in soil systems and how these interactions affect ecosystem functioning. To provide such data, the Soil BON Foodweb Team invites researchers worldwide to use a common methodology to address six long-term goals: (1) to collect globally representative harmonised data on soil micro-, meso-, and macrofauna communities, (2) to describe key environmental drivers of soil animal communities and food webs, (3) to assess the efficiency of conservation approaches for the protection of soil animal communities, (4) to describe soil food webs and their association with soil functioning globally, (5) to establish a global research network for soil biodiversity monitoring and collaborative projects in related topics, (6) to reinforce local collaboration networks and expertise and support capacity building for soil animal research around the world. In this paper, we describe the vision of the global research network and the common sampling protocol to assess soil animal communities and advocate for the use of standard methodologies across observational and experimental soil animal studies. We will use this protocol to conduct soil animal assessments and reconstruct soil food webs at sites associated with the global soil biodiversity monitoring network, Soil BON, allowing us to assess linkages among soil biodiversity, vegetation, soil physico-chemical properties, climate, and ecosystem functions. In the present paper, we call for researchers especially from countries and ecoregions that remain underrepresented in the majority of soil biodiversity assessments to join us. Together we will be able to provide science-based evidence to support soil biodiversity conservation and functioning of terrestrial ecosystems.

References

Anderson, J. M. & J. S. I. Ingram (1993): Tropical Soil Biology and Fertility: A Handbook of Methods. – C.A.B. International, Wallingford, Oxfordshire, England.

Andrassy, I. (1956): Die rauminhalts-und gewichtsbestimmung der fadenwürmer (Nematoden). – Acta Zoologica Hungarica 2: 1–5.

André, H. M., X. Ducarme & P. Lebrun (2002): Soil biodiversity: myth, reality or conning? – Oikos 96: 3–24.

Bardgett, R. D., & W. H. van der Putten (2014): Belowground biodiversity and ecosystem functioning. – Nature 515: 505–511.

Barnes, A. D., M. Jochum, J. S. Lefcheck, N. Eisenhauer, C. Scherber, M. I. O’Connor, P. de Ruiter & U. Brose (2018): Energy Flux: The Link between Multitrophic Biodiversity and Ecosystem Functioning. – Trends in Ecology & Evolution 33: 186–197.

Barnes, A. D., M. Jochum, S. Mumme, N. F. Haneda, A. Farajallah, T. H. Widarto & U. Brose (2014): Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. – Nature Communications 5: 5351.

Bignell, D. E. (2009): Towards a universal sampling protocol for soil biotas in the humid tropics. – Pesquisa Agropecuaria Brasileira 44: 825–834.

Bonkowski, M., C. Villenave & B. Griffiths (2009): Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. – Plant and Soil 321: 213–233.

Briones, M. J. I. (2014): Soil fauna and soil functions: a jigsaw puzzle. – Frontiers in Environmental Science 2 [https://doi.org/10.3389/fenvs.2014.00007].

Brousseau, P.-M., D. Gravel & I. T. Handa (2018): On the development of a predictive functional trait approach for studying terrestrial arthropods. – The Journal of Animal Ecology 87: 1209–1220.

Brussaard, L. (1998): Soil fauna, guilds, functional groups and ecosystem processes. – Applied Soil Ecology: A Section of Agriculture, Ecosystems & Environment 9: 123–135.

Buchkowski, R. W., & Z. Lindo (2021): Stoichiometric and structural uncertainty in soil food web models. – Functional Ecology 35(1): 288–300.

Burkhardt, U., D. J. Russell, P. Decker, M. Döhler, H. Höfer, S. Lesch, S. Rick, J. Römbke, C. Trog, J. Vorwald & et al. (2014): The Edaphobase project of GBIF-Germany—A new online soil-zoological data warehouse. – Applied Soil Ecology 83: 3–12.

Cameron, E. K., I. S. Martins, P. Lavelle, J. Mathieu, L. Tedersoo, M. Bahram, F. Gottschall, C. A. Guerra, J. Hines, G. Patoine & et al. (2019): Global mismatches in aboveground and belowground biodiversity. – Conservation Biology 33: 1187–1192.

Cardoso, P., S. Pekár, R. Jocqué & J. A. Coddington (2011): Global patterns of guild composition and functional diversity of spiders. – PloS One 6: e21710.

Cesarz, S., A. E. Schulz, R. Beugnon & N. Eisenhauer (2019): Testing soil nematode extraction efficiency using different variations of the Baermann-funnel method. – Soil Organisms 91: 61–72.

Chertov, O., A. Komarov, C. Shaw, S. Bykhovets, P. Frolov, V. Shanin, P. Grabarnik, I. Priputina, E. Zubkova & M. Shashkov (2017): Romul_Hum—A model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity. – Ecological Modelling 345: 125–139.

Coulibaly, S. F. M., B. R. Winck, M. Akpa-Vinceslas, L. Mignot, M. Legras, F. Forey & M. Chauvat (2019): Functional assemblages of Collembola determine soil microbial communities and associated functions. – Frontiers of Environmental Science 7 [https://doi.org/10.3389/fenvs.2019.00052].

Deckmyn, G., O. Flores, M. Mayer, X. Domene, A. Schnepf, K. Kuka, K. Van Looy, D. P. Rasse, M. J. I. Briones,S. Barot & et al. (2020): KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept. – PeerJ 8: e9750.

De Goede, R. G. M. & B. Verschoor (2000): The nematode extraction efficiency of the Oostenbrink elutriator-cottonwool filter method with special reference to nematode body size and life strategy. – Nematology 2: 325–342.

de Vries, F. T., E. Thebault, M. Liiri, K. Birkhofer, M. A. Tsiafouli, L. Bjornlund, H. B. Jorgensen, M. V. Brady, S. Christensen, P. C. de Ruiter & et al. (2013): Soil food web properties explain ecosystem services across European land use systems. – Proceedings of the National Academy of Sciences of the United States of America 110: 14296–14301.

Delgado-Baquerizo, M., P. B. Reich, C. Trivedi, D. J. Eldridge, S. Abades, F. D. Alfaro, F. Bastida, A. A. Berhe, N. A. Cutler, A. Gallardo & et al. (2020): Multiple elements of soil biodiversity drive ecosystem functions across biomes. – Nature Ecology & Evolution 4: 210–220.

Demetrio, W. C., A. C. Conrado, A. N. S. Acioli, A. C. Ferreira, M. L. C. Bartz, S. W. James, E. da Silva, L. S. Maia, G. C. Martins, R. S. Macedo & et al. (2021): A “Dirty” Footprint: Macroinvertebrate diversity in Amazonian Anthropic Soils. – Global Change Biology 27: 4575–4591.

Dopheide, A., D. Xie, T. R. Buckley, A. J. Drummond & R. D. Newcomb (2019): Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity. – Methods in Ecology and Evolution 10: 120–133.

Edwards, C. A. (1991): The assessment of populations of soil-inhabiting invertebrates. – Agriculture, Ecosystems & Environment 34: 145–176.

Eggleton, P. & I. Tayasu (2001): Feeding groups, lifetypes and the global ecology of termites. – Ecological Research 16: 941–960.

Ehnes, R. B., B. C. Rall & U. Brose (2011): Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. – Ecology Letters 14: 993–1000.

Eisenhauer, N., Bonn, A., & A Guerra, C. (2019): Recognizing the quiet extinction of invertebrates. –– Nature Communications 10: 50.

Eisenhauer, N., M. A. Bowker, J. B. Grace & J. R. Powell (2015): From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology. – Pedobiologia 58: 65–72.

Eisenhauer, N., F. Buscot, A. Heintz-Buschart, S. D. Jurburg, K. Küsel, J. Sikorski, H.-J. Vogel & C. A. Guerra (2021): The multidimensionality of soil macroecology. – Global Ecology and Biogeography 30: 4–10.

Fierer, N., M. S. Strickland, D. Liptzin, M. A. Bradford & C. C. Cleveland (2009): Global patterns in belowground communities. – Ecology Letters 12: 1238–1249.

Filser, J., J. H. Faber, A. V. Tiunov, L. Brussaard, J. Frouz, G. De Deyn, A. V. Uvarov, M. P. Berg, P. Lavelle, M. Loreau & et al. (2016): Soil fauna: key to new carbon models. – Soil 2: 565–582

Flores, O., G. Deckmyn, J. Curiel Yuste, M. Javaux, A. Uvarov, S. van der Linde, B. De Vos, H. Vereecken, J. Jiménez, O. Vinduskova & A. Schnepf (2021): KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models-II: model description, implementation and testing. – PeerJ 9: e10707.

Frouz, J. (1999): Use of soil dwelling Diptera (Insecta, Diptera) as bioindicators: a review of ecological requirements and response to disturbance. – Agriculture, Ecosystems & Environment 74: 167–186.

García-Palacios, P., F. T. Maestre, J. Kattge & D. H. Wall (2013): Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. – Ecology Letters 16: 1045–1053.

Geisen, S., M. J. I. Briones, H. Gan, V. M. Behan-Pelletier, V.-P.Friman, G. A. de Groot, S. E. Hannula, Z. Lindo, L. Philippot, A. V. Tiunov & D. H. Wall (2019): A methodological framework to embrace soil biodiversity. – Soil Biology & Biochemistry 136: 107536.

Geisen, S., D. H. Wall & W. H. van der Putten (2019): Challenges and Opportunities for Soil Biodiversity in the Anthropocene. – Current Biology 29: R1036–R1044.

Gongalsky, K. B. (2021): Soil macrofauna: Study problems and perspectives. – Soil Biology & Biochemistry 159: 108281.

Guerra, C. A., R. D. Bardgett, L. Caon, T. W. Crowther, M. Delgado-Baquerizo, L. Montanarella, L. M. Navarro, A. Orgiazzi, B. K. Singh, L. Tedersoo & et al. (2021a): Tracking, targeting, and conserving soil biodiversity. – Science 371: 239–241.

Guerra, C. A., M. Delgado-Baquerizo, E. Duarte, O. Marigliano, C. Görgen, F. T. Maestre & N. Eisenhauer (2021b): Global projections of the soil microbiome in the Anthropocene. – Global Ecology and Biogeography 30: 987–999.

Guerra, C. A., A. Heintz-Buschart, J. Sikorski, A. Chatzinotas, N. Guerrero-Ramírez, S. Cesarz, L. Beaumelle, M. C. Rillig, F. T. Maestre, M. Delgado-Baquerizo, F. Buscot & et al. (2020): Blind spots in global soil biodiversity and ecosystem function research. – Nature Communications 11: 3870.

Guerra, C. A., D. H. Wall & N. Eisenhauer (2021c): Unearthing soil ecological observations. – Soil Organisms 93: 79–81.

Handa, I. T., R. Aerts, F. Berendse, M. P. Berg, A. Bruder, O. Butenschoen, E. Chauvet, M. O. Gessner, J. Jabiol, M. Makkonen & et al. (2014): Consequences of biodiversity loss for litter decomposition across biomes. – Nature 509: 218–221.

Hassall, M., S. Adl, M. Berg, B. Griffiths & S. Scheu (2006): Soil fauna–microbe interactions: towards a conceptual framework for research. – European Journal of Soil Biology 42: 54–60.

Heberling, J. M., J. T. Miller, D. Noesgaard, S. Weingart & D. Schigel (2021): Data integration enables global biodiversity synthesis. – Proceedings of the National Academy of Sciences of the United States of America 118: e2018093118.

Huhta, V. (2007): The role of soil fauna in ecosystems: A historical review. – Pedobiologia 50: 489–495.

ISO 23611-3 (2019): Soil quality - sampling of soil invertebrates. Part 3, Sampling and extraction of enchytraeids.

Jiménez, J. J. & T. Decaëns (2000): ‘Vertical Distribution of Earthworms in Grassland Soils of the Colombian Llanos’. – Biology and Fertility of Soils 32: 463–73.

Jochum, M., A. D. Barnes, U. Brose, B. Gauzens, M. Sünnemann, Amyntas & N. Eisenhauer (2021): For flux’s sake: General considerations for energy-flux calculations in ecological communities. – Ecology and Evolution 11: 12948–12969.

Jochum, M. & N. Eisenhauer (2022): Out of the dark: Using energy flux to connect above‐ and belowground communities and ecosystem functioning. – European Journal of Soil Science 73: e13154.

Kempson, D., M. Lloyd & R. Ghelardi (1963): A new extractor for woodland litter. – Pedobiologia 3: 1–21.

King, J. R. (2016): Where do eusocial insects fit into soil food webs? – Soil Biology & Biochemistry 102: 55–62.

Lavelle, P., T. Decaëns, M. Aubert, S. Barot, M. F. Blouin, F. Bureau, P. Margerie, P. Mora & J.-P. Rossi (2006): Soil invertebrates and ecosystem services. – European Journal of Soil Biology 42: 3–15.

Lavelle, P., L. Mathieu, A. Spain, G. Brown, C. Fragoso, C. E. Lapied, A. De Aquino, I. Barois, E. Barrios, M. E. Barros & et al. Soil macroinvertebrate communities: a worldwide assessment. – Under review in Global Ecology and Biogeography.

Liu, M., L. J. Clarke, S. C. Baker, G. J. Jordan & C. P. Burridge (2020): A practical guide to DNA metabarcoding for entomological ecologists. – Ecological Entomology 45: 373–385.

Macfadyen, A. (1961): Improved funnel-type extractors for soil arthropods. – The Journal of Animal Ecology 30(1): 171–184.

Maestre, F. T. & N. Eisenhauer (2019): Recommendations for establishing global collaborative networks in soil ecology. – Soil Organisms 91: 73–85.

Moreira, F. M. S., E. Jeroen Huising & D. E. Bignell (2012): A Handbook of Tropical Soil Biology: Sampling and Characterization of Below-ground Biodiversity. Routledge, Milton Park, Abingdon, Oxfordshire.

Newton, J. S., & H. Proctor (2013): A fresh look at weight-estimation models for soil mites (Acari). – International Journal of Acarology 39: 72–85.

Niva, C. C., R. M. Cezar, P. M. Fonseca, M. R. G. Zagatto, E. M. Oliveira, E. F. Bush, L. A. Clasen & G. G. Brown (2015): Enchytraeid abundance in Araucaria Mixed Forest determined by cold and hot wet extraction. – Brazilian Journal of Biology 75: 169–175.

Oliverio, A. M., H. Gan, K. Wickings & N. Fierer (2018): A DNA metabarcoding approach to characterize soil arthropod communities. – Soil Biology & Biochemistry 125: 37–43.

Orgiazzi, A. & P. Panagos (2018): Soil biodiversity and soil erosion: It is time to get married. – Global Ecology and Biogeography 27: 1155–1167.

Pereira-da-Conceicoa, L., V. Elbrecht, A. Hall, A. Briscoe, H. Barber-James & B. Price (2021): Metabarcoding unsorted kick‐samples facilitates macroinvertebrate‐based biomonitoring with increased taxonomic resolution, while outperforming environmental DNA. – Environmental DNA 3: 353–371.

Petersen, H. (1975): Estimation of dry weight, fresh weight, and calorific content of various Collembolan species. – Pedobiologia 15: 222–243.

Petersen, H. & M. Luxton (1982): A comparative analysis of soil fauna populations and their role in decomposition processes. – Oikos 39: 288–388.

Pey, B., J. Nahmani, A. Auclerc, Y. Capowiez, D. Cluzeau, J. Cortet, T. Decaëns, L. Deharveng, F. Dubs, S. Joimel & et al. (2014): Current use of and future needs for soil invertebrate functional traits in community ecology. – Basic and Applied Ecology 15: 194–206.

Phillips, H. R. P., C. A. Guerra, M. L. C. Bartz, M. J. I. Briones, G. Brown, T. W. Crowther, O. Ferlian, K. B. Gongalsky, J. van den Hoogen, J. Krebs & et al. (2019): Global distribution of earthworm diversity. – Science 366: 480–485.

Potapov, A. (2021): Multifunctionality of belowground food webs: resource, size and spatial energy channels. – bioRxiv [https://doi.org/10.1101/2021.06.06.447267].

Potapov, A., B. Bellini, S. Chown, L. Deharveng, F. Janssens, Ľ. Kováč, N. Kuznetsova, J.-F. Ponge, M. Potapov, P. Querner & et al. (2020a): Towards a global synthesis of Collembola knowledge – challenges and potential solutions. – Soil Organisms 92: 161–188.

Potapov, A. M., N. Dupérré, M. Jochum, K. Dreczko, B. Klarner, A. D. Barnes, V. Krashevska, K. Rembold, H. Kreft, U. Brose & et al. (2020b): Functional losses in ground spider communities due to habitat structure degradation under tropical land-use change. – Ecology 101: e02957.

Potapov, A. M., A. A. Goncharov, E. E. Semenina, A. Y. Korotkevich, S. M. Tsurikov, O. L. Rozanova, A. E. Anichkin, A. G. Zuev, E. S. Samoylova, I. I. Semenyuk & et al. (2017): Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. – European Journal of Soil Biology 82: 88–97.

Potapov, A. M., C. A. Guerra, J. van den Hoogen, A. Babenko, B. C. Bellini, M. P. Berg, S. L. Chown, L., Deharveng, L. Kovac, N. A. Kuznetsova & et al. (2022): Globally invariant metabolism but density-diversity mismatch in springtails. – bioRxiv [https://doi.org/10.1101/2022.01.07.475345].

Potapov, A. M., S. Scheu & A. V. Tiunov (2019): Trophic consistency of supraspecific taxa in below-ground invertebrate communities: Comparison across lineages and taxonomic ranks. – Functional Ecology 33: 1172–1183.

Rossi, J.-P., J. Mathieu, M. Cooper & M. Grimaldi (2006): Soil macrofaunal biodiversity in Amazonian pastures: Matching sampling with patterns. – Soil Biology & Biochemistry 38: 2178–2187.

Ruiz, N., J. Mathieu, L. Célini, C. Rollard, G. Hommay, E. Iorio & P. Lavelle (2011): IBQS: A synthetic index of soil quality based on soil macro-invertebrate communities. – Soil Biology & Biochemistry 43: 2032–2045.

Sackett, T. E., A. T. Classen & N. J. Sanders (2010): Linking soil food web structure to above- and belowground ecosystem processes: a meta-analysis. – Oikos 119: 1984–1992.

Schneider, K., S. Migge, R. A. Norton, S. Scheu, R. Langel, A. Reineking & M. Maraun (2004): Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). – Soil Biology & Biochemistry 36: 1769–1774.

Schneider, S., G. W. Taylor, S. C. Kremer, P. Burgess, J. McGroarty, K. Mitsui, A. Zhuang, J. R. deWaard & J. M. Fryxell (2021): Bulk arthropod abundance, biomass and diversity estimation using deep learning for computer vision. – Methods in Ecology and Evolution [https://doi.org/10.1111/2041-210X.13769].

Scholes, R. J., G. M. Mace, W. Turner, G. N. Geller, N. Jurgens, A. Larigauderie, D. Muchoney, B. A. Walther & H. A. Mooney (2008): Toward a global biodiversity observing system. – Science 321: 1044–1045.

Seibold, S., W. Rammer, T. Hothorn, R. Seidl, M. D. Ulyshen, J. Lorz, M. W. Cadotte, D. B. Lindenmayer, Y. P. Adhikari, R. Aragón & et al. (2021): The contribution of insects to global forest deadwood decomposition. – Nature 597: 77–81.

Sohlström, E. H., L. Marian, A. D. Barnes, N. F. Haneda, S. Scheu, B. C. Rall, U. Brose & M. Jochum (2018): Applying generalized allometric regressions to predict live body mass of tropical and temperate arthropods. – Ecology and Evolution 8: 12737–12749.

Soong, J. L. & U. N. Nielsen (2016): The role of microarthropods in emerging models of soil organic matter. – Soil Biology & Biochemistry 102: 37–39.

Sys, S., S. Weißbach, L. Jakob, S. Gerber & C. Schneider: CollembolAI, a macrophotography and computer-vision workflow to digitize and characterize samples of soil invertebrates communities preserved in fluid. – Under review. – In: Methods in Ecology & Evolution.

Trap, J., M. Bonkowski, C. Plassard, C. Villenave & E. Blanchart (2016): Ecological importance of soil bacterivores for ecosystem functions. – Plant and Soil 398: 1–24.

Tullgren, A. (1917): En enkel apparat for automatiskt vittjande av sallgods. – Entomologisk Tidskrift 38: 97–100.

van den Hoogen, J., S. Geisen, D. Routh, H. Ferris, W. Traunspurger, D. A. Wardle, R. G. M. de Goede, B. J. Adams, W. Ahmad, W. S. Andriuzzi & et al. (2019): Soil nematode abundance and functional group composition at a global scale. – Nature 572: 194–198.

van den Hoogen, J., N. Robmann, D. Routh, T. Lauber, N. van Tiel, O. Danylo & T. W. Crowther (2021): A geospatial mapping pipeline for ecologists. – bioRxiv [https://doi.org/10.1101/2021.07.07.451145].

van Groenigen, J. W., I. M. Lubbers, H. M. J. Vos, G. G. Brown, G. B. De Deyn & K. J. van Groenigen (2014): Earthworms increase plant production: a meta-analysis. – Scientific Reports 4: 6365.

White, H. J., L. León-Sánchez, V. J. Burton, E. K. Cameron, T. Caruso, L. Cunha, T. Dirilgen, S. D. Jurburg, R. Kelly, D. Kumaresan & et al. (2020): Methods and approaches to advance soil macroecology. – Global Ecology and Biogeography 29: 1674–1690.

Zanella, A., J.-F. Ponge, J.-M. Gobat, J. Juilleret, M. Blouin, M. Aubert, O. Chertov & J. L. Rubio (2018a): Humusica 1, article 1: Essential bases – Vocabulary. – Applied Soil Ecology 122: 10–21.

Zanella, A., J.-F. Ponge, B. Jabiol, G. Sartori, E. Kolb, J.-M. Gobat, R.-C. L. Bayon, M. Aubert, R. D. Waal, B. Van Delft, A. Vacca & et al. (2018b): Humusica 1, article 4: Terrestrial humus systems and forms — Specific terms and diagnostic horizons. – Applied Soil Ecology 122: 56–74.

Downloads

Published

2022-04-01

How to Cite

Potapov, A. M., Sun, X., Barnes, A. D., Briones, M. J., Brown, G. G., Cameron, E. K., Chang, C.-H., Cortet, J., Eisenhauer, N., Franco, A. L., Fujii, S., Geisen, S., Guerra, C., Gongalsky, K., Haimi, J., Handa, I. T., Janion-Sheepers, C., Karaban, K., Lindo, Z., Mathieu, J., Moreno, M. L., Murvanidze, M., Nielsen, U., Scheu, S., Schmidt, O., Schneider, C., Seeber, J., Tsiafouli, M., Tuma, J., Tiunov, A., Zaytsev, A. S., Ashwood, F., Callaham, M., & Wall, D. (2022). Global monitoring of soil animal communities using a common methodology. SOIL ORGANISMS, 94(1), 55–68. https://doi.org/10.25674/so94iss1id178

Issue

Section

CALL FOR COLLABORATION