Soil Gamasina from savanna and ReviTec site of Ngaoundéré (Adamawa, Cameroon): abundance and species diversity

Authors

  • Dieudonné Djackba Danra University of Ngaoundéré, Faculty of Science, Department of Biological Sciences, P.O. Box 454, Ngaoundéré, Cameroon
  • Elias Nchiwan Nukenine University of Ngaoundéré, Faculty of Science, Department of Biological Sciences, P.O. Box 454, Ngaoundéré, Cameroon
  • Hartmut Koehler University of Bremen, UFT Center for Environmental Research and Sustainable Technology, 28359 Bremen, Germany

DOI:

https://doi.org/10.25674/8fsw-6t13

Keywords:

ReviTec, Gamasina, Cameroon, savanna, high Guinean savanna ecozone

Abstract

Soil Gamasina of Central African savanna are little known. In our study, Gamasina were assessed for a high Guinean savanna and for selected treatments of a ReviTec site for the rehabilitation of degraded soil, Ngaoundéré region (Adamawa, Cameroon). The experimental site was established in 2012. Four years later, in 2016, four sampling campaigns during the rainy season were undertaken (May, June, July, August). The investigated treatments were: (1) compost + mycorrhiza (cpmy), (2) compost + biochar (cpbc), (3) compost + biochar + bokashi (cpbcbo). The controls were: ReviTec control (ctrl1) and adjacent savanna (sav). Gamasina were extracted from 0 – 10 cm soil using a modified Berlese-Tullgren extractor and identified microscopically at the morphospecies level. Most of the thirty-four species belonging to fourteen genera and eight families seem to be new to science; they are treated as morphospecies with preliminary names.  In comparison to savanna and control, the investigated ReviTec treatments increased total Gamasina abundance up to factor five and species number by factor two. Gamasina clearly preferred compost + biochar (cpbc) and compost + biochar + bokashi (cpbcbo) treatments compared to compost + mycorrhiza (cpmy). This confirmed our previous investigations in the same experiment. Expectations for low abundances and diversity of Gamasina in the savanna subjected to a four months’ dry season have to be rejected. Expectations that the ReviTec application is initiating and accelerating the successional process are confirmed.

 

References

Bai, Z. G., D. L. Dent, L. Olsson & M. E. Schaepman (2008): Proxy global assessment of land degradation. – Soil Use and Management 24: 223–234.

Ballabio, L., R. Comolli & P. Fumagalli (2001): Soil quality evaluation in periurban lowland forests using biological indicators. In: 16th European Forum on Urban Forestry Milano, Italy 7–11 May, 2013: p. 1.

Bedano, J. C. & A. Ruf (2007): Soil predatory mite communities (Acari : Gamasina) in agroecosystems of Central Argentina. – Applied Soil Ecology 36: 22–31.

Castilho, R. C., G. J. de Moraes & B. Halliday (2012): Catalogue of the mite family Rhodacaridae Oudemans, with notes on the classification of the Rhodacaroidea (Acari: Mesostigmata). – Zootaxa 3471: 1–69.

Coja, T. & A. Bruckner (2006): The maturity index applied to soil gamasine mites from five natural forests in Austria. – Applied Soil Ecology 34: 1–9.

Danra, D. D. (2014): Soil microarthropods biodiversity and distribution in two experimental sites: the ReviTec sites of Ngaoundere and Maroua-Salak (Cameroon) (Master Thesis). – University of Ngaoundéré, Ngaoundéré, Adamaoua, Cameroon.

Djoussi, N. L. R. (2015): Seasonal dynamics of soil microarthropod communities in two experimental sites: an agricultural soil and the ReviTec of Ngaoundere (Cameroon) (Master Thesis). – University of Ngaoundéré, Ngaoundéré, Adamaoua, Cameroon.

Ekebafe, M. O., L. O. Ekebafe & S. O. Ugbesia (2015): Biochar composts and composites. – Science Progress 98(2): 169–176.

Ermilov, S. G. & H. Koehler (2017): New data on oribatid mites (Acari, Oribatida) of Cameroon: results of the Joint German-Cameroonian scientific expedition (April 2016). – Systematic & Applied Acarology 22(12): 2233–2244.

Gardi, C., Jeffery, S. & A. Saltelli (2013): An estimate of potential threats levels to soil biodiversity in EU. – Global Change Biology: 1–11.

Gbarakoro T. N., S. N. Okiwelu, O. C. Umeozor & M. A. Badejo (2010): Soil microarthropods in a secondary rainforest in rivers state, nigeria: -i- seasonal variations in species richness, vertical distribution and density in an undisturbed habitat. – Scientia Africana 9(1): 46–54.

Gwiazdowicz, D. J., J. Kamczyc & R. Rakowsk (2011): Mesostigmatid mites in four classes of wood decay. – Experimental and Applied Acarology 55: 155–165.

Hurlbutt, H. W. (1972): Ascinae and Podocinidae (Acarina: Mesostigmata) fromTanzania. – Acarologia 13(2): 280–300.

Hurlbutt, H. W. (1973): The Afrogamasellus Loots and Ryke and Afrodacarellus n. gen. (Acarina: Rhodacaridae) of Tanzania. – Acarologia 25(4): 565–615.

Iloba, B. N. & T. Ekrakene (2008): Soil micro arthropods recovery rates from 0–5 cm depth within 5 months period following endosulfan (Organochlorine Pesticide) treatment in designated plots in Benin City, Nigeria. – Academic Journal of Entomology 1(2): 36–44.

Karg, W. (1993): Acari (Acarina), Milben, Parasitiformes (Anactinochaeta), Cohors Gamasina Leach, Raubmilben. – In: Die Tierwelt Deutschlands und der angrenzenden Meere, 59. Teil, Gustav Fischer, Jena, Stuttgart, New York: 523 pp.

Karg, W. & B. Freier (1995): Parasitiforme Raubmilben als Indikatoren für den ökologischen Zustand von Ökosystemen. – Mitteilungen der Biologischen Bundesanstalt für Land- u. Forstwirtschaft, Berlin-Dahlem 308: 1–96.

Kesel R. (2012): Installation of an ecological site for demonstration, lecturing and research at the University of Ngaoundéré, Cameroon. Installation and monitoring report. Bremen: 16 pp.

Kesel, R., H. Koehler & W. Heyser (2006): ReviTec, a modular approach of ecological restoration to combat degradation and desertification. – SER-Newsletter: 2 pp.

Koehler, H. (1997): Mesostigmata (Gamasina, Uropodina), efficient predators in agroecosystems. – Agriculture, Ecosystems & Environment 62: 105–117.

Koehler, H. (1999). Predatory mites (Gamasina, Mesostigmata). – Agriculture, Ecosystems & Environment 74: 395–410.

Koehler, H. (2005): Application of ecological knowledge to habitat restoration landscape dynamics. – In: Barthlott, W., K. E. Linsenmaiy & S. Porembski (eds): Encyclopedia of Life Support Systems (EOLSS), Developed under the auspices of the UNESCO. - EOLSS Publishers, Oxford ,UK [http://www.eolsss.net]: 1–13.

Koehler, H., W. Heyser, W. & R. Kesel (2006): The ecological technology ReviTec® in combating degradation: concept, first results, applications. – In: Restoration and stability of ecosystems in arid and semi-arid regions. – Science Press, Beijing: 288–303.

Koehler, H., R. Kesel, A. Ngakou & O. Mambo (2013): Eine komplexe Sache: Kaffeesäcke gegen Bodendegradation und Wüstenausbreitung in Kamerun. – In: TendenZen 19, Jahrbuch des Überseemuseums Bremen: 41–56.

Koehler, H. & V. Melecis (2010): Long-term observations of soil mesofauna. – In: Müller, F., Baessler, C., Schubert,

H. & S. Klotz (eds): Long Term Ecological Research: Between Theory and Application. – Springer Dordrecht Heidelberg London New York: 203–220.

Koehler, H. & J. Müller (2003): Entwicklung der Biodiversität während einer 20 jährigen Sukzession als Grundlage für Managementmaßnahmen. – bioDIVEMAN, Forschungsvorhaben in Rahmen von BIOLOG. Abschlussbericht, Juni 2003, BMBF 01LC0005: 259 pp.

Koehler, H. & J. Warrelmann (2007): Weiterentwicklung der Revitalisierungstechnologie ReviTec für degradierte Böden (project report ReviTal05 No. FV 172). – Universität Bremen: 84 pp.

Lal, R. (2015): Restoring soil quality to mitigate soil degradation. – Sustainability 7: 5875–5895.

Manu, M., R. I. Bǎncilǎ & M. Onete (2013): Soil mite communities (Acari: Gamasina) from different ecosystem types from Romania. – Belgian Journal of Zoology 143(1): 30–41.

Mapongmetsem, M. P., G. Fawa, J. B. Noubissie-Tchiagam, A. B. Nkongmeneck, S. S. H. Biaou & R. Bellefontaine (2016): Vegetative propagation of Vitex doniana Sweet from root segments cuttings.. – Bois et Forêts des Tropiques 327(1): 29–37.

Maribie, C., G. Nyamasyo, P. Ndegwa, J. Mung’atu, J. Lagerlöf & M. Gikungu (2010): Abundance and diversity of soil mites (Acari) along a gradient of land use types in Taita Taveta, Kenya. – Tropical and Subtropical Agroecosystems 13: 11–26.

Minor, M. A., & R. A. Norton (2004): Effects of soil amendments on assemblages of soil mites (Acari : Oribatida, Mesostigmata) in short-rotation willow plantings in central New York. – Canadian Journal of Forest Research 34: 1417–1425.

Moraza L. M. & M. A. Peña (2005): The family Pachylaelapidae Vitzthum, 1931 on Tenerife Island (Canary Islands), with description of seven new species of the genus Pachylaelaps (Acari, Mesostigmata: Pachylaelapidae). – Acarologia 45(2–3): 103–129.

Mosadoluwa, A. B. & A. O.-A. Buny (2000): Abundance and diversity of soil mites of fragmented habitats in a biosphere reserve in Southern Nigeria. – Pesquisa Agropecuária Brasileira 35(11): 2121–2128.

N’Dri, K. J. & H. M. André (2011): Soil mite densities from central Ivory Coast. – Journal of Animal and Plant Sciences 10(2): 1283–1299.

N’Dri, K. J., Hance, T., & André, H. M., Lagerlöf, J. & E. J. Tondoh (2016): Microarthropod use as bioindicators of the environmental state : case of soil mites (Acari) from Côte d’Ivoire. – Journal of Animal and Plant Sciences 29(2): 4622–4637.

Oben, A. M. (2017): The effects of biochar on the abundance and diversity of soil microarthropods, particularly Gamasina, in Bremen (Master Thesis). University of Bremen.

Okiwelu, S. N., T. N. Gbarakoro, C. O. Umeozor & A. M. Badejo (2012): Soil microarthropods in a secondary rainforest, Rivers State, Nigeria - IV- The impact of oil pollution on their vertical distribution. – Resources and Environment 2(2): 14–19.

Osman, K. T. (2014). Soil degradation, conservation and remediation. – Springer Dordrecht Heidelberg New York London: 237 pp.

Pérez-Velázquez, D., G. Castaño-Meneses, A. Callejas-Chavero& J. G. Palacios-Vargas (2011): Mesostigmatid mite (Acari : Mesostigmata ) diversity and abundance in two sites in Pedregal de San Ángel Ecological Reserve, Distrito Federal, México. – Zoosymposia 6: 255–259.

Petersen, H. & M. Luxton (1982): A comparative analysis of soil fauna populations and their role in decomposition processes. – Oikos 39: 287–388.

Schäfer, M. (2012): Wörterbuch der Ökologie. 5. Auflage, – Spektrum Akademischer Verlag Heidelberg: 392 pp.

Thies, E. J. & C. M. Rillig (2009). Characteristics of Biochar: Biological Properties. – In: Lehmann, J. & J. Stephen (eds): Biochar for Environmental Management: Science and Technology. – Earthscan, UK, USA: 85–105.

Wagg, C., Bender, S. F., Widmer, F. & M. G. A. van der Heijden (2014): Soil biodiversity and soil community composition determine ecosystem multifunctionality. – Proceedings of the National Academy of Sciences of the United States of America 111(14): 5266–5270.

Downloads

Published

2018-12-01

How to Cite

Danra, D. D. ., Nukenine, E. N. ., & Koehler, H. . (2018). Soil Gamasina from savanna and ReviTec site of Ngaoundéré (Adamawa, Cameroon): abundance and species diversity. SOIL ORGANISMS, 90(3), 187–198. https://doi.org/10.25674/8fsw-6t13

Issue

Section

ARTICLES