
© Senckenberg Museum of Natural History Görlitz · 2015
ISSN  1864-6417

pp. 203–213

A simple graphical method for displaying structured population 
dynamics and STdiag, its implementation in an R package

Vincent Le Bourlot1,2, François Mallard1, David Claessen1,2 and Thomas Tully1,3*

1  Institute of Ecology and Environmental Science - Paris (IEES Paris), Sorbonne Universités, UPMC Univ Paris 06, CNRS, IRD,  

 INRA, Paris, France
2  Environmental Research and Teaching Institute (CERES-ERTI), École Normale Supérieure, Paris, France
3  ESPE de l’académie de Paris, Sorbonne Universités, Paris-Sorbonne Univ Paris 04, Paris, France 

* Corresponding author, e-mail: thomas.tully@upmc.fr

Received  2 January 2015  |  Accepted  2 November 2015

Published online at www.soil-organisms.de  1 December 2015  |  Printed version  15 December 2015

Abstract

In demography, a detailed study of the temporal dynamics of the structure of a population is often required to better understand 
the processes that underline its overall dynamics and the individual’s life histories. Heatmaps, using time and structure (such 
as size-structure) as x and y coordinates and density as colours, are efficient tools for displaying the dynamics of a structured 
population. Such representations (structure-time diagrams) reveal the data at several levels, from general outlook to fine details. 
Despite its efficiency, this type of visual display has been scarcely used in ecology and demography. Using the example of springtail 
populations maintained in the laboratory and a woodlouse population studied in the field, we explain why this type of representation 
can be used to analyse the population dynamics of soil organisms and why it should be more widely used in demography. We 
also present the R package STdiag (for ‘Structure Time diagram’), an interface to complex graphical functions to easily produce 
and analyse such ‘structure-time diagrams’ from raw datasets. This package is available for all operating systems via R-Forge. Its 
syntax and options are described, discussed and illustrated using our case studies. This graphical display is a simple and efficient 
way to make large demographic datasets coherent and to disclose the underlying, often hidden, demographical processes.
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1. Introduction

Structured populations are complex assemblages of 
individuals differing in age, size or body condition, 
reproductive stage or physiological state. The dynamics 
of structured populations are often complex, hard to keep 
track of and difficult to understand and analyse (Benton 
et al. 2006). Depending on their state, size and age, the 
individuals have different demographic performances 
and respond differently to ecological mechanisms 
such as competition or to environmental factors such 
as resource or temperature. Furthermore, population 
structures are shaped by the complex interplay of both 
biotic and abiotic effects (Ohlberger et al. 2013). For 

an individual, the effect of the demographic feedback 
loop depends on the state of the individual itself but 
also on the structure of its population. For instance, if 
large individuals dominate the smaller ones through 
interference competition in a population, the strength of 
the competition perceived by an individual is determined 
in a complex manner by its own body size and by the size-
structure of the population (Le Bourlot et al. 2014). The 
demographic responses to environmental change can also 
be non-trivial, because the sensitivity of the individual’s 
demographic performances to an environmental effect 
may differ depending on the state, age or size of the 
individuals (Ohlberger et al. 2011). A gradual change in 
temperature can, for example, suddenly destabilise the 



Vincent Le Bourlot et al.204

SOIL ORGANISMS 87 (3) 2015

population dynamics, which can shift abruptly towards 
a new regime (Ohlberger et al. 2011, Nelson et al. 2013). 
This complexity is increased again by the fact that the 
dynamics of a structured population is influenced not 
only by the current biotic and abiotic conditions, but 
also by long-term effects due to long-lasting effects of 
previous environmental conditions (Baron et al. 2010, 
Mugabo et al. 2010) and to inter-generational effects 
(Benton et al. 2008, Marquis et al. 2008).

Given the multiple causes that influence population 
dynamics and the complexity of the direct and indirect 
mechanisms through which they drive the population 
dynamics, we argue that extracting relevant biological 
information from structured population time series 

requires not only fitting complex demographic models 
to the data, but also studying graphs of the population 
structure dynamics, which can themselves contribute 
to understanding what happens in the population. 
When used on their own, models and calculations can 
be misleading since they rely on assumptions that may 
be false. A good graphical display can reveal, without 
distorting, what the data have to say (Tufte 2001). Graphs 
can be very valuable for studying the data at several 
levels of detail, to look for signatures of past conditions 
on the dynamics, to verify the validity of the model’s 
assumptions and even to suggest alternative ways of 
setting up the statistical analysis (Anscombe 1973). The 
aim of this paper is to present a simple graphical method 

Figure 1. As a practical example, we used an experimental population of the Collembola Folsomia candida (A), whose structure had been 
measured every one or two weeks. The size structure at one time is classically shown as a histogram (B) and the total population dynamics 
on a time series plot (C). To represent both the structure and temporal dynamics, the population has been divided in several size classes to 
plot their dynamics independently (D) or to produce a stacked bar plot (E). While these representations underline the dynamics inside each 
size classes, the patterns of dynamics between adjacent classes remain hidden.
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for displaying the temporal dynamics of structured 
populations, which can be used to visualise large and 
complex demographic time-series efficiently, revealing 
the details and nuances of the complex demographic 
processes that occur in most populations. We argue that 
such graphical displays are essential tools for ferreting 
out the devils hidden in the details of structured 
population dynamics (Benton et al. 2006). 

Different approaches have been used to display 
structured population dynamics (Fig. 1C, D, E). First, 
by displaying the whole population size fluctuations, 
the structure is then not taken into account (Fig. 1C) 
(Schrautzer et al. 2011). Refining a little bit, the structure 
can be roughly considered by splitting individuals into 
separate groups (of size or stages), whose dynamics can 
be displayed on adjacent plots (Plaistow & Benton 2009) 
or, to facilitate comparisons, on overlaid curves (Fig. 1D) 
or on a stacked bar plot (Fig. 1E) (Madsen & Shine 2000). 
Condensed three-dimensional diagrams are required to 
finely display the structure dynamic, especially when 
the structuring factor is continuous (size, age). These 
diagrams encompass ‘event history diagrams’ that allow 
the graphical representation of life history traits at the 
individual level of a whole cohort (Carey et al. 1998, 
2008) or the production of ‘shaded contour maps’ such 
as the ones used to represent the temporal dynamics 
of aged-structured demographic rates (also called 
‘Lexis diagrams’) such as death or birth rates in human 
populations (Vaupel et al. 1997, 1998). These graphical 
representations are mainly used in human demography to 
represent secular changes in age-dependent demographic 
rates (Vaupel et al. 1987, 1997, 1998, Andreev 2000, 
Erlangsen et al. 2003). To our knowledge, despite their 
interest, such powerful visual display tools have almost 
never been used in ecology to represent the temporal 
dynamics of structured populations (Færøvig et al. 
2002). This may result from the prohibiting cost of 
publishing colour pictures. With the development of 
online publishing, colour methods are becoming more 
widely used. The R software (The R Development Core 
Team 2012) is a language and environment for data 
manipulation, calculation, statistical computing and 
graphic display. Heatmaps can be produced using base 
packages (e.g. image in graphics and heatmap 
in stats) or using specific libraries such as lattice 
(Sarkar 2008) or ggplot2 (Wickham 2009). Although 
highly customizable, the plotting functions are often 
difficult to handle for beginners.

We developed the R-package STdiag to provide a 
user-friendly interface for representing time series of 
structured populations using heatmaps. This package 
has been originally designed to study the dynamics 
of springtail populations that we maintained in our 

laboratory. It can be applied to other soil organisms and 
also to many other case studies. We therefore detail how 
to generate such graphics and discuss their biological 
interests focusing on two case studies.

2. Material and methods

2.1. Method overview

Our method produces diagrams that we refer to as 
‘structure-time diagrams’, with a structuring element 
(age, size, ...) along the Y-axis and time along the 
X-axis. These variables are usually continuous but are 
discretised in a histogram and put into several classes, 
the number and width of which depend on the quality and 
size of the available dataset. For each time and structure 
class coordinate, a colour rectangle is plotted whose 
hue refers to the number of individuals (or any other 
relevant statistics such as frequency or rate) in that class 
(possibly on a logarithmic scale) at the given time. This 
representation puts side-by-side colour histograms for 
each time value and emphasises the temporal dynamics 
according to the structure of the population.

2.2. Empirical data

We applied our graphical representation method with 
the help of the STdiag package to two soil organisms, the 
springtail Folsomia candida Willem, 1902 (Collembola, 
Isotomidae) and the pill woodlouse Armadillidium 
vulgare (Latreille, 1804) (Isopoda, Armadillidiidae).

2.3. Dynamics of laboratory populations  
of Collembola

As a first practical example, we used data from 
the monitoring of experimental populations of the 
Collembola Folsomia candida, a parthenogenetic 
ametabo lous hexapod commonly used as a laboratory 
model organism in soil biology (Fountain & Hopkin 
2005). The individuals were bred at 21°C in cylindrical 
plastic boxes of 5.3 cm diameter with a 3 cm thick plaster 
substrate to keep the environment damp (Tully & Ferrière 
2008) (Fig. 1A). The studied populations were fed weekly 
with a mix of yeast in agar-agar in a fixed quantity and 
kept in the dark the whole time. Measures of the number 
and size of individuals (Fig. 1B) were taken every one 
or two weeks during about 600 days (~ 85 weeks) using 
image analysis (Mallard et al. 2013).
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2.4. Dynamics of a wild population of 
woodlice

As another applied example, we used the data from 
a published follow-up of the seasonal dynamic of the 
structure of a population of the woodlouse Armadillidium 
vulgare (Hassall & Dangerfield 1990). We extracted from 
the original figure (a succession of head width pyramids, 
see Fig. 4A) the percentage of the population within each 
class of head width for each date.

2.5. Package STdiag usage

To easily display the dynamics of a structured 
population, we developed the package STdiag, which is 
freely available at R-forge (R-forge.r-project.org) and can 
be installed in R with the following command:
install.packages(“STdiag”, 
dependencies = TRUE, repos = c 
(“http://R-Forge.R-project.org”, 
“http://cran.cnr.berkeley.edu”), 
type = “source”)
The package can then be loaded using the command 
library(STdiag).

2.6. Importing and formatting the data

Data frame. STdiag uses the lattice function 
levelplot (Sarkar 2008) as the core plotting function. 
As a consequence, the basic data format is a three column 
data frame containing the X (time), Y (structure such as 
age or size) and Z (number of individuals) coordinates. 
The data frame has T × S lines where T is the number of 
time values and S the number of structure classes.

Matrix. Another possibility is to use a matrix description 
of the data using two vectors x and y of size T and S, 
respectively, for the time and structure coordinates, and a 
matrix z of size T × S containing the number of individuals 
at each coordinate. This mimics the format used in the 
base function image (The R Development Core Team 
2012). In case one wishes to convert data from a matrix 
to a frame format, the function Matrix2DataFrame is 
provided and it can be used, for instance, as follows:
time = c(1:100); structure = 
c(1:10); count = matrix(data = 
runif(10*100, min = 0, max = 200), 
nrow = 100, ncol = 10) # random data
DataFrame <- Matrix2DataFrame(count, 
time, structure, xlab = “time”,  
ylab = “structure”, zlab = “number”)  
# conversion

Individual based data. The function Indiv2 
DataFrame is also provided to convert individually 
based data to a data-frame that can be plotted with 
STdiag. The package comes with IndivData, a 
table with more than 110,000 individual body length 
measurements of springtails in a population tracked during 
about 1.5 years. The Indiv2DataFrame handles a 
data-frame containing one line per individual and, in 
columns for each individual, the time of the observation 
and the value of the structuring element (body length in 
our example). The option classes allows to control 
the number of classes in which the structure variable is 
discretised. A single value produces the desired number 
of regular classes (default set to 50), whereas a vector 
specifies the breaks of the classes as in the base function 
hist. This function is used as follows:
data(IndivData) # to load the data
DataFrame <- Indiv2DataFrame  
(IndivData, classes = 50)
or 
DataFrame <- Indiv2DataFrame 
(IndivData, classes = seq(0,10,0.1))

2.7. Generating the plots

Data frame. The simplest way to generate the basic 
plot is to use the data frame formulation. If the columns 
of the data frame are in a time-structure-number order, 
a simple call to STdiag (DataFrame) will produce the 
plot. If one wants to specify what columns to plot, the 
function STdiag accepts the formula syntax:
STdiag(counts~date*size,  
data = DataFrame)
In any of those or the following forms, the vector used 

as time can either be a numeric vector or a vector of dates 
of classes POSIXlt, POSIXct or Date. Class factor is 
not yet supported for date format.

Matrix. We provide matrixSample, a matrix with 
demographic springtail data as a practical example. 
To use the matrix formulation, one can either call 
STdiag(matrixSample), in which case X and Y-axes 
will be default vectors from 1 to T and S, respectively, or, 
if one wants to specify the x and y coordinates, using the 
time, structure and count objects created above: 
STdiag(x = time, y = structure,  
z = count).

2.8. Improving the graphical representation

Our method is implemented with several options to 
adjust the plot to be as informative as possible.
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Colour palette. The readability of the diagram partly 
relies on the choice of colours for the palette (Fig. 2A, 
B). The hues are sorted following either a grey scale 
from pale grey to black or an adapted rainbow gradient 
(Fig. 2A, B, C). This can be adjusted using the option 
color = “palette” inside STdiag(), where palette 
can be one of the following: gray, topo, terrain, 
heat, cm, rainbow or by default tim [see tim.
colors in library fields (Furrer et al. 2012)]. One can 
also use the package RColorBrewer or the function 
colorRampPalette from the package grdevices 
to create custom palettes. In Fig. 4B we have used the 
RColorBrewer palette with nine different colours. The 
command to generate Fig. 4 is:
STdiag(PercentOfTotal ~ Date * 
HeadWidth, data = woodlice,  
color = list(‘custom’, brewer.pal(9, 
‘YlOrBr’)), log = T, main = “Woodlice 
population”, ylab = “Head width, mm”, 
xlab = “Date”)
The option color = list(‘custom’, brewer.

pal(9, “YlOrBr”)) creates a colour palette which is 
not the default one (hence the keyword custom). We 
use the brewel.pal palette from the RColorBrewer 
package, which provides some nice looking colour palettes 
especially for thematic maps. 9 is the number of different 
colours used and “YlOrBr” is one of the diverging 
sequential palettes provided by the RColorBrewer 
package. Refer to the ?brewel.pal for more detailed 
information.

Logarithmic scale. When the number of individuals 
in the different classes differs by several orders of 
magnitude (Fig. 1B), we recommend using a logarithmic 
scale for the Z-axis to increase the readability of the 
generated graphics. Using the option log = FALSE or 
log = TRUE allows the user to switch easily between 
linear and logarithmic colour scales.

Interpolation. The quality of the diagram can 
sometimes be improved by applying an interpolation to 
smooth the representation and link together uneven time 
intervals by creating evenly spaced data (Fig. 2D). The 
interpolation method creates an artificial dataset with 
evenly distributed data, based on the original data. It is 
essential to make a clear distinction when reading such 
a diagram between the real data and data created by 
the interpolation and we recommend to first use a non-
interpolated representation of the data. To interpolate 
the data, we provide the function Interpolation in 
the package. This function is an interface to the function 
interp.surface in package fields adapted to 
quickly handle data in the format accepted by the function 
STdiag. It takes as an argument the data frame to be 
interpolated in the form of three columns: time, structure 

and number of individuals, in that order. The options 
intervX and intervY allow the user to manually 
choose the intervals between two interpolated points, 
respectively over X (time) and Y (structure) axes. If those 
options are left empty, the function uses the minimum 
distance between two points in the first and second 
columns as intervals for X and Y-axes, respectively.

Kernel density estimate. The function STdiag pro-
vides an option smooth = TRUE to plot a weighted 
kernel density estimate of the data using an axis-
aligned bivariate normal kernel, where the data are the 
time-structure coordinates weighted by the number of 
individuals. The estimate is derived from the function 
kde2d in package MASS (Venables & Ripley 2002). 
The density estimate can be adjusted with options 
sm, a positive scalar (0 meaning the original data 
and 1 being the normal reference distribution kernel 
estimation bandwidth) defining the smoothness of the 
kernel density estimate, and n, the number of points on 
the X Y grid. Together, these options allow viewing a 
smooth representation of the structured data (Fig. 2E, F). 
Contrary to the interpolation, the kernel density estimate 
only provides a smooth representation of the data. In the 
case of missing data, such as irregular time intervals, 
interpolating the data before plotting the kernel density 
can avoid having gaps in the density for a low smoothing 
factor (small sm).

Code. The code used to generate Fig. 2 is given in 
the following lines. We used the data ‘sample‘ which is 
provided in the library STdiag, so these lines can be 
executed directly after loading the package.
data(sample)
st1 = STdiag(z~x*y, data = sample, 
xlab = “Time”, ylab = “Structure”, 
color = “gray”, main = “Gray 
Palette”)
st2 = STdiag(z~x*y, data = sample, 
xlab = “Time”, ylab = “Structure”, 
color = “tim”, main = “Tim Palette”)
st3 = STdiag(z~x*y, data = sample, 
xlab = “Time”, ylab = “Structure”, 
color = “tim”, main = “Log Color 
Scale”, log = TRUE)
st4 = STdiag(z~x*y,  
data = Interpolation(sample),  
xlab = “Time”, ylab = “Structure”, 
color = “tim”, main = “Interpolated 
data”, log = TRUE)
st5 = STdiag(z~x*y, data = 
Interpolation(sample), xlab = “Time”, 
ylab = “Structure”, color = “tim”, 
main = “sm = 0.2”, log = T,  
smooth = TRUE, sm = 0.2)
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st6 = STdiag(z~x*y, data = 
Interpolation(sample), xlab = 
“Time”, ylab = “Structure”, color = 
“tim”, main = “sm = 0.6”, log = T, 
smooth = T, sm = 0.6)
pdf(file = “figSTdiag.pdf”, width = 7, 
height = 16*7/9); print(st1); 
print(st2); print(st3) ; print(st4); 
print(st5); print(st6); dev.off()
Note that, since STdiag is a wrapper around the 

lattice function image.plot, the plots can be saved 
in a variable and printed using the base function print.

2.9. Extracting quantitative measurements 
from the diagrams

The function STdiag.measure can be used to 
interact with the diagram and obtain some quantitative 
measurements from it. The general syntax is STdiag.
measure(stdiag, type = c(“point”,“line”)). 
First, the plot to be interacted with needs to be saved in 
a variable on which the function STdiag.measure 
is applied. One can, for instance, apply this function on 
the object st3 previously created to measure the growth 
rate of a cohort STdiag.measure(st3, type = 
“line”). When the function is called, it will wait for 
the user to identify via mouse clicks one or two points 
(depending on the option type) in the panel being drawn. 
If used with the option type = “point”, it returns the 
position of the point identified with a single mouse click. 
This can be useful, for example, when measuring the 
size at birth on a diagram (white arrows on Fig. 2B, try 
STdiag.measure(st2, type = “point”)) or the 
average size of a group of adults (star on Fig. 2C). If used 
with the option type = “line”, one has to click twice 
on the diagram and the function returns the slope of the 
line defined by the two points along with the coordinates 
of the points. This can be used to measure the growth rate 
of a cohort directly on the graphs [line on Fig. 2C with 
STdiag.measure(st3, type = “line”), and 
Fig. 4B], or the secular change of the size of adults in a 
population (Fig. 3). Finally, the option region = TRUE 
provides the possibility of extracting a region of the plot, 
i.e. a subset of the data around the chosen point or line. With 
it, the option range can be used to adjust the window of 
selection. More precisely, range is a factor of the mean 
distance between two coordinates to define the region to 
extract. If the desired point coordinates are x and y and 
the original data are data, the region is defined by x in the 
interval x-range*mean(diff(unique(data$x)), 
x+range*mean(diff(unique(data$x))) and the 
same applies to y.

For example STdiag.measure(st2, type =  
“point”, region = TRUE, range = 3) will 
provide the x, y and z values of the selected point together 
with the x, y, and z values of all the points in a region 
centred around the clicked point. This second piece of 
information can be used, for example, with the function 
weighted.mean to measure the mean body size of the 
individual in the region:
test = STdiag.measure(st2, type = 
“point”, region = TRUE, range = 3)
weighted.mean(test$region$y, 
test$region$z)
Note that one has to avoid using a logarithmic scale 

(st2) when using the weighted.mean function to 
estimate the mean size of a group of individuals.

Of course, one has to bear in mind that these 
measurements rely on where one clicks on the graph. We 
advise users to be cautious about this, especially when 
the graphics are noisy. Measuring the repeatability may 
be useful at this stage in order to estimate the reliability 
of these measurements.

3. Results

3.1 Dynamics of springtail laboratory 
population

The structure-time diagrams of Collembola 
populations (Figs 2, 3) immediately reveal the 
predominance of the younger class (<0.5 mm). The 
populations are usually bimodal (juveniles and adults, 
Figs 2, 3B) and sometimes trimodal (small and large 
adults; Fig. 3A). The use of a logarithmic scale (Fig. 2C) 
reveals some inter-class dynamics undetectable when 
using classical representations: for example, between 
day 150 and day 300 a cohort of small individuals 
grows and changes into adults. This visual display 
allows one to estimate some demographic parameters 
that cannot be seen on classical representations (Fig. 1)  
using the function STdiag.measure described 
above: size at birth (~ 0.28 mm, by observing spikes of 
births, white arrows in Fig. 2B), median adult length 
(1.2 mm around day 50, black star in Fig. 2C), growth 
rate of a cohort of juveniles striving to be recruited in 
the population (0.22 mm/month, slope of the straight 
line in Fig. 2C). It is also possible to study the long-term 
temporal dynamics of adult body length. Depending on 
different conditions (intensity of competition, quantity 
of resource, temperature), the mean length of the adults 
in the population can remain stable (when competition 
is intense, Fig. 3B, line 3), increase (when more food 
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is given in the rearing boxes, Fig. 3A, line 1, Fig. 3B, 
line 4) or even decrease (when competition between 
two cohorts is too intense, Fig. 3A, line 2, or when the 
amount of food provided is reduced, Fig. 3B, line 5). 
The different population structures revealed in Figs 2 
and 3 result from genetic factors (Mallard et al. 2015, 
the lineage used in Fig. 3 produces trimodal populations, 
which is not the case for the lineage of Fig. 2) and from 
changes in the environmental conditions (in Fig. 3B, the 
amount of food provided each week is increased and then 
decreased, whereas it is maintained constant in the other 
case studies). These graphics illustrate the remarkable 
ability that the springtails maintain during most of their 
lifespan to resume growth or even to shrink when the 
environmental conditions change.

3.2. Dynamics of a wild population of 
woodlice

Two different representations of the dynamics of a 
woodlouse population have been displayed in Fig. 4 as 
an example of a wild population of a soil organism. This 
original representation (Fig. 4A) already shows some 
cohort dynamics. Put side by side, the pyramids without 
accounting for the time that separates them makes it 
difficult to extract any valuable temporal information. 
The corresponding structure-time diagram (Fig. 4B) 
– with head-width as the structuring element – can be 
used to directly measure and compare the growth rates 
of the different cohorts. The representation is noisy due 
to a limited temporal and structural resolution, but one 

(A) (B)

(C) (D)

(E) (F)

Figure 2. Collembolan population dynamics plotted with STdiag. Length is discretised into classes of 0.05 mm length. The number of 
individuals at each date length coordinate is represented on a linear grey (A) or colour (B) scale or on a logarithmic scale (C, D). Panel 
(D) represents an interpolated version of panel (C). Panels (E) and (F) represent two kernel density estimates with increasing smoothness. 
After using these smoothing methods, the meaning of the scale of the z-axis cannot be easily interpreted anymore. These smoothed 
representations may be useful to visually reveal an overall message from the data, while hiding some details and noise. On average, the 
population is mostly composed of small individuals (~ 0.4 mm) living with some adults (~ 1.2 mm). Logarithmic scale reveals details about 
the recruitment of some cohorts, the growth rate of which can be estimated (black line, C). See main text for details about the options used 
to produce the different plots.



Vincent Le Bourlot et al.210

SOIL ORGANISMS 87 (3) 2015

can easily recognise the alternation of cohorts visible in 
Fig. 4A. This example demonstrates the applicability of 
structure-time diagram to even low resolution ecological 
data, and its generality in terms of type of data to represent.

4. Discussion

A multi-dimensional diagram such as our structure-
time diagram (Fig. 2B) is preferred to a simple time 
series representation (Fig. 1C, D) for several reasons: 
time series representation lacks the continuity of the 
structuring element and, thus, even when time series plots 
represent different classes of individuals (Fig. 1D), the 
representation with lines makes it difficult to detect and 
analyse any cross class dynamics. A three-dimensional 
diagram offers a unique and complete visual display of 
the variations of the population structure and is thus a 
very powerful tool for the description of a population 
and a convenient way of guiding the analysis. We show 
that it can be used to track the details of the population 
dynamics of Folsomia candida, a lab-model species in 
ecotoxicology, and this approach could be used to study 
the effects of a pollutant on several components of the 
populations dynamics (fecundity, recruitment, cohorts 
growth rates, size and number of individuals etc.) and 
not only on the number of surviving individuals after 
a given time period, as is usually done. Moreover, by 
juxtaposing several structure-time diagrams, one can add 
an extra dimension to the graphical display, such as the 

sex of the individuals or any other categorical variable 
(population, genotype, etc.). If one uses the same axis for 
these diagrams, one can compare at a glance the complex 
dynamics of several categories of individuals.

The structure-time diagram does not need individuals 
to be identified from one time to the other. And without 
any individual trajectories, changes in the structure over 
time directly draw dynamics of cohorts (as in Fig. 2C).
STdiag can also be used to represent any type of data 

with a structuring factor like age or size and an aggregate 
statistic such as mortality rate (Vaupel et al. 1987) or 
body mass (Ozgul et al. 2009). It can also be used for 
displaying data from a numerical model (Le Bourlot et 
al. 2014) or data from medical surveys or demographic 
studies to reveal any secular or seasonal changes for 
example.

Such diagrams fulfil the criteria for excellence in 
statistical graphics (Tufte 1990): they show many 
numbers within a small space (high data density), thus 
making large data sets coherent without distorting the 
data; they reveal the data at several levels of detail, from 
fine structure to broad overview; they encourage the eyes 
to compare different pieces of data and induce the viewer 
to think about the substance rather than about the method 
(Tufte 2001).

With the development of automatic data acquisition 
and prolific databases (Le Galliard et al. 2012, Mallard 
et al. 2012, 2013), the use of such a graphical display 
should become more common in population ecology, but 
also in many other fields such as human demography, 
epidemiology or medical surveys.

Figure 3. Two laboratory populations of springtails followed during 1.6 years. (A) Three cohorts of juveniles grow and recruit during the 
first 150 days. The second and third cohorts reach a smaller adult size than the first one. After about 200 days, the population structure 
reaches an almost stable trimodal distribution made of large and small adults and of juveniles that do not manage to grow anymore. This 
graphic also reveals that the mean size of the cohort of large adults shrink between about 100 and 300 days (line 2). (B) This diagram shows 
the remarkable plasticity of the cohort of adults, which can resume growth after more than 200 days when the amount of food provided 
has increased. It is only after about 340 days, when the adults have ceased growing, that the juveniles can benefit from the improved 
environmental conditions by growing themselves. These two graphs reveal the strong size-dependent interference competition, which is a 
primary factor driving the population structure dynamics in this system (Le Bourlot et al. 2014).
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Figure 4. Dynamics of a woodlice population. (A) Original figure representing the seasonal variation of a woodlice population structure 
(expressed in %, one head unit = 0.04 mm, Hassall & Dangerfield 1990). Coloured boxes are individuals born in odd years, black boxes 
represent individuals born in even years. (B) Same data represented with a structure-time diagram. This diagram can be directly used to 
measure the growth rate of the different cohorts (1.14 mm/year for the cohort born in summer 1979).
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