Development of experimental mesocosms for cicada nymphs Graptopsaltria nigrofuscata: methodology and research recommendations
SHORT NOTE
DOI:
https://doi.org/10.25674/so93iss3id171Keywords:
above- and belowground linkage, field experiment, rearing method, root feedersAbstract
The experimental mesocosm, an artificial enclosure system for soil organisms, is a major research tool in soil ecology. Development of a rearing method for target organisms within mesocosms is essential for conducting mesocosm experiments. Cicadas (Hemiptera: Cicadoidea) are assumed to play important roles as root feeders and ecosystem engineers in soil ecosystems. Nonetheless, their ecological roles have not been investigated to the same extent as other root -feeding species, possibly because it is difficult to rear cicadas in mesocosm experiments. Here, we report a rearing method for cicada nymphs (Graptopsaltria nigrofuscata) in an experimental mesocosm over a period of 3 months. We prepared eight polyvinyl chloride cages filled with mineral soil in a forest. One final instar (0.33 0.10 g fresh weight [MeanSD]), and one early instar cicada nymph (2.230.16 g fresh weight [MeanSD]) were placed into each mesocosm cage with a seedling of Japanese larch (Larix kaempferi) as a food source. After 3 months, 75 % (6 to 8) of final instar cicada nymphs survived and increased in fresh weight by approximately 6 % since the beginning of the experiment, whereas all early instar nymphs had died. This is the first study to provide a detailed rearing method for cicada nymphs in East Asia, a region that harbors a high species diversity of cicadas. Our mesocosm system could be an effective tool for understanding the ecology and ecological roles of final instar cicada nymphs in belowground ecosystems.
Downloads
References
Bardgett, R. D., & W. H. Van Der Putten (2014): Belowground biodiversity and ecosystem functioning. – Nature 515: 505 –511 [https://doi.org/10.1016/j.pedobi.2017.05.007].
Bezemer, T. M. & N. M. van Dam (2005): Linking aboveground and belowground interactions via induced plant defenses. – Trends in Ecology & Evolution 20: 617–624 [https://doi.org/10.1016/j.tree.2005.08.006].
Blossey, B. & T. R. Hunt-Joshi (2003): Belowground herbivory by insects: influence on plants and aboveground herbivores. – Annual review of entomology 48: 521–547 [https://doi.org/10.1146/annurev.ento.48.091801.112700].
Boulard, M. & B. Mondon (1995): Vies et mémoires de cigales. – Editions de l‘Equinoxe, Barbentane, France (In French).
De Deyn, G. B., J. Van Ruijven, C. E. Raaijmakers, P. C. De Ruiter & W. H. Van Der Putten (2007): Above‐and belowground insect herbivores differentially affect soil nematode communities in species‐rich plant communities. – Oikos 116: 923–930 [https://doi.org/10.1111/j.0030-1299.2007.15761.x].
Dybas, H. S. & M. Lloyd (1974): The habitats of 17‐year periodical cicadas (Homoptera: Cicadidae: Magicicada Spp.). – Ecological Monographs 44: 279–324 [https://doi.org/10.2307/2937032].
Gan, H. & K. Wickings (2020): Root herbivory and soil carbon cycling: Shedding “green” light onto a “brown” world. – Soil Biology and Biochemistry 150: 107972 [https://doi.org/10.1016/j.soilbio.2020.107972].
Hunter, M. D. (2001): Out of sight, out of mind: the impacts of root‐feeding insects in natural and managed systems. – Agricultural and Forest Entomology 3: 3–9 [https://doi.org/10.1046/j.1461-9563.2001.00083.x].
Kampichler, C., A. Bruckner & E. Kandeler (2001): Use of enclosed model ecosystems in soil ecology: a bias towards laboratory research. – Soil Biology and Biochemistry 33: 269–275 [https://doi.org/10.1016/S0038-0717(00)00140-1].
Karban, R. (1980): Periodical cicada nymphs impose periodical oak tree wood accumulation. – Nature 287: 326-327 [https://doi.org/10.1038/287326a0].
Karban, R., C. Black & S. Weinbaum (2000): How 17‐year cicadas keep track of time. – Ecology Letters 3: 253–256 [https://doi.org/10.1046/j.1461-0248.2000.00164.x].
Kato, M. (1956): The biology of the cicadas. – Iwasaki Shoten, Tokyo (in Japanese).
Lee, Y. F., Y. H. Lin & S. H. Wu (2010): Spatiotemporal variation in cicada diversity and distribution, and tree use by exuviating nymphs, in east Asian Tropical Reef-Karst forests and forestry plantations. – Annals of the Entomological Society of America 103: 216–226 [https://doi.org/10.1603/AN09100].
Logan D. P., C. A. Rowe & B. J. Maher (2014): Life history of chorus cicada, an endemic pest of kiwifruit (Cicadidae: Homoptera). – New Zealand Entomology 37: 96–106 [https://doi.org/10.1080/00779962.2014.897302].
Maezono, Y. & T. Miyashita (2000): Folsomia candida (Collembola: Isotomidae) living in the nest cell of a cicada Graptopsaltria nigrofuscata underground. – Edaphologia 66: 51–57.
Makoto, K., S. V. Bryanin & K. Takagi (2019): The effect of snow reduction and Eisenia japonica earthworm traits on soil nitrogen dynamics in spring in a cool-temperate forest. – Applied Soil Ecology 144: 1–7 [https://doi.org/10.1016/j.apsoil.2019.06.019].
Marshall, D. C., M. Moulds, K. B. R. Hill, B. Price, E. J. Wade, C. L. Owen, G. Goemans, K. Marathe, V. Sarkar, J. R. Cooley & et al. (2018): A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily classification. – Zootaxa 4424: 1–64 [https://doi.org/10.11646/zootaxa.4424.1.1].
Moriyama, M. & H. Numata (2006): Induction of egg hatching by high humidity in the cicada Cryptotympana facialis. – Journal of insect physiology 52: 1219–1225 [https://doi.org/10.1016/j.jinsphys.2006.09.005].
Moriyama, M. & H. Numata (2008): Diapause and prolonged development in the embryo and their ecological significance in two cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata. – Journal of insect physiology 54: 1487–1494 [https://doi.org/10.1016/j.jinsphys.2008.08.008].
Odum, E. P. (1984): The mesocosm. – BioScience 34: 558–562 [https://doi.org/10.2307/1309598].
Soler, R., T. M. Bezemer, W. H. Van Der Putten, L. E. Vet & J. A. Harvey (2005): Root herbivore effects on above‐ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. – Journal of Animal Ecology 74: 1121–1130 [https://doi.org/10.1111/j.1365-2656.2005.01006.x].
Thakur, M. P., H. R. P. Phillips, U. Brose, F. T. De Vries, P. Lavelle, M. Loreau, J. Mathieu, C. Mulder, W. H. Van der Putten, M. Rillig & et al. (2020): Towards an integrative understanding of soil biodiversity. – Biological Reviews 95: 350–364 [https://doi.org/10.1111/brv.12567].
Tomita, K. & T. Hiura (2021): Reforestation provides a foraging habitat for brown bears (Ursus arctos) by increasing cicada Lyristes bihamatus density in the Shiretoko World Heritage site. – Canadian Journal of Zoology 99: 205–212 [https://doi.org/10.1139/cjz-2020-0222].
Tomita, K. (2021): Camera traps reveal interspecific differences in the diel and seasonal patterns of cicada nymph predation. – The Science of Nature 108: 52 [https://doi.org/10.1007/s00114-021-01762-w].
Tsunoda, T. & N. M. van Dam (2017): Root chemical traits and their roles in belowground biotic interactions. – Pedobiologia 65: 58–67 [https://doi.org/10.1016/j.pedobi.2017.05.007].
Tsunoda, T., K. Makoto, J. I. Suzuki & N. Kaneko (2018): Warming increased feeding of a root-chewing insect at the soil surface and enhanced its damage on a grass. – Soil Biology and Biochemistry 126: 213–218 [https://doi.org/10.1016/j.soilbio.2018.09.009].
Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setälä, W. H. Van Der Putten & D. H. Wall (2004): Ecological linkages between aboveground and belowground biota. – Science 304: 1629–1633 [https://doi.org/10.1126/science.1094875].
White, J. A. & M. Lloyd (1975): Growth rates of 17 and 13-year periodical cicadas. – American Midland Naturalist 94: 127–143 [https://doi.org/10.2307/2424544].
Yang, L. H. (2004): Periodical cicadas as resource pulses in North American forests. – Science 306: 1565–1567 [https://doi.org/10.1126/science.1103114].
Downloads
Published
Issue
Section
License
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.