Effects of nutritional quality on the reproductive biology of Archegozetes longisetosus (Actinotrichida, Oribatida, Trhypochthoniidae)


  • Adrian Brückner Ecological Networks, Technische Univeristät Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
  • Romina Schuster Ecological Networks, Technische Univeristät Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
  • Katja Wehner Ecological Networks, Technische Univeristät Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
  • Michael Heethoff Ecological Networks, Technische Univeristät Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany


Nutrient ecology, life history, macroelements, mites, development


The parthenogenetic trhypochthoniid oribatid mite Archegozetes longisetosus serves as a model organism. Numerous studies have investigated different aspects of its life history and nutritional biology, yet several results remain contradictive. To clarify effects of nutrition on life history parameters, we set up a large scale experiment with ten food resources of different origins and nutritional composition (animal, bacterial, fungal and herbal). Generally, food influenced all life history parameters. The number of offspring ranged from 0 to 106 individuals per female, while the developmental time and body mass varied in a range of 32 up to 88 days and 3 to 43 µg dry weight, respectively. The number of offspring per female was correlated to the C/N-ratio and thus the availability of nitrogen in the food, while the body mass was correlated to the C/P-ratio and C/Ca-ratio (for early juvenile instars). The developmental time did not respond to any measured nutritional parameter.


Aoki, J. (1965): Oribatiden (Acarina) Thailands. I. – Nature and Life in Southeast Asia 4:129–193.

Arrese, E. L. & J. L. Soulages (2010): Insect fat body: energy, metabolism, and regulation. – Annual Review of Entomology 55: 207–225.

Barbosa, P. & J. L. Capinera (1977): The influence of food on developmental characteristics of the gypsy moth, Lymantria dispar (L.). – Canadian Journal of Zoology 55: 1424–1429.

Bastida, F., E. Kandeler, J. L. Moreno, M. Ros, C. Garcia & T. Hernandez (2008): Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. – Applied Soil Ecology 40: 318–329.

Beck, L. (1967): Beiträge zur Kenntnis der neotropischen Oribatidenfauna. 5. Archegozetes (Arach., Acari). – Senckenberg Biologie 48: 407–414.

Behmer, S. T., S. J. Simpson & D. Raubenheimer (2002): Herbivore foraging in chemically heterogeneous environments: nutrients and secondary metabolites. – Ecology 83: 2489–2501.

Benjamini, Y. & Y. Hochberg (1995): Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.

Boggs, C. (1992): Resource allocation: exploring connections between foraging and life history. – Functional Ecology 6: 508–518.

Borken, W., A. Muhs & F. Beese (2002): Application of compost in spruce forests: effects on soil respiration, basal respiration and microbial biomass. – Forest Ecology and Management 159: 49–58.

Brückner, A. & M. Heethoff (2018): Nutritional effects on chemical defense alter predator–prey dynamics. – Chemoecology 28 [doi.org/10.1007/s00049-018-0253-9].

Brückner, A., R. Schuster, T. Smit & M. Heethoff (2018b). Imprinted or innated food preferences in the model mite Archegozetes longisetosus (Actinotrichida, Oribatida, Trhypochthoniidae). – Soil Organisms 90 (1): 23–26.

Brückner, A., R. Schuster, T. Smit, M. M. Pollierer, I. Schäffler & M. Heethoff (2018a): Track the snack – Olfactory cues shape foraging behaviour of decomposing soil mites (Oribatida). Pedobiologia 66: 74–80.

Call, J., J. Butcher, J. Blake, R. Smart & J. Shupe. (1978): Phosphorus influence on growth and reproduction of beef cattle. – Journal of Animal Science 47: 216–225.

Canavoso, L. E., Z. E. Jouni, K. J. Karnas, J. E. Pennington & M. A. Wells (2001): Fat metabolism in insects. – Annual Review of Nutrition 21: 23–46.

Case, T. J. (1979): Optimal body size and an animal’s diet. – Acta Biotheoretica 28: 54–69.

Cohen, D. (1971): Maximizing final yield when growth is limited by time or by limiting resources. – Journal of Theoretical Biology 33: 299–307.

Davis, G. (1975): Essential dietary amino acids for growth of larvae of the yellow mealworm, Tenebrio molitor L. – The Journal of Nutrition 105: 1071–1075.

Demment, M. W. & P. J. Van Soest (1985): A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. – American Naturalist 125: 641–672.

Elser, J. J., D. R. Dobberfuhl, N. A. MacKay & J. H. Schampel (1996): Organism size, life history, and N: P stoichiometry. – BioScience 46: 674–684.

Estrada-Venegas, E. G., R. A. Norton, A. Equihua-Martínez, R. Nápoles, J. Trinidad Santos & H. González Hernandez (1999): Biologia y nueva sinonima de Archegozetes longisetosus Aoki (Acari - Oribatida) de la Mancha, Veracruz, Mexico. – Folia Entomologica Mexico 107: 41–50.

Fagan, W. F., E. Siemann, C. Mitter, R. F. Denno, A. F. Huberty, H. A. Woods & J. J. Elser (2002): Nitrogen in insects: implications for trophic complexity and species diversification. – American Naturalist 160: 784–802.

Florkin, M. & B. Scheer (1970): Chemical Zoology. – Academic Press, New York.

Friedman, M. (1937): The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. – Journal of the American Statistical Association 32: 675–701.

Gebhardt, M. D. & S. C. Stearns (1988): Reaction norms for developmental time and weight at eclosion in Drosophila mercatorum. – Journal of Evolutionary Biology 1: 335–354.

Hammer, Ø., D. A. T. Harper & P. D. Ryan (2001): PAST: Paleontological statistics software package for education and data analysis. – Palaeontologia Electronica 4: 9.

Haq, M. A. (1978): Breeding Biology of Oribatid Mites. – In: Edwards C. A. & G. K. Veesesh (eds): Soil Biology and Ecology in India. – Hebbol, Bangalore: 145–151.

Haq, M. A. (1982): Pheromonal regulation of aggregation and moulting in Archegozetes longisetosus (Acari: Oribatei). Proceedings of the 11th Annual Conference of the Ethological Society of India. – Calicut University Research Journal, Calicut: 19.

Haq, M. A. & C. Adolph (1981): A comparative study of the duration of the life cycles of four species of oribatid mites (Acari: Oribatida) from the soils of Kerala. Indian Journal of Acarology 5: 56–61.

Haq, M. A. & N. R. Prabhoo (1977): Observations on the feeding habits of oribatid mites from the soils of Kerala (Acarina: Cryptostigmata). – Entomon 1: 133–137.

Heethoff, M., M. Laumann & P. Bergmann (2007): Adding to the reproductive biology of the parthenogenetic oribatid mite, Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae). – Turkish Journal of Zoology 31: 151–159.

Heethoff, M. & S. Scheu (2016): Reliability of isotopic fractionation (Δ15N, Δ13C) for the delimitation of trophic levels of oribatid mites: Diet strongly affects Δ13C but not Δ15N. – Soil Biology & Biochemistry 101: 124–129.

Heethoff, M., P. Bergmann, M. Laumann & R. A. Norton. (2013): The 20th anniversary of a model mite: A review of current knowledge about Archegozetes longisetosus (Acari, Oribatida). – Acarologia 53: 353–368.

Heidemann, K., S. Scheu, L. Ruess & M. Maraun (2011): Molecular detection of nematode predation and scavenging in oribatid mites: Laboratory and field experiments. – Soil Biology & Biochemistry 43: 229–236.

Heino, M. & V. Kaitala (1999): Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. – Journal of Evolutionary Biology 12: 423–429.

Honciuc, V. (1996): Laboratory studies of the behavior and life cycle of Archegozetes longisetosus Aoki 1965 (Oribatida). In Acarology IX. Proceedings. – Ohio Biological Survey, Columbus: 637–640.

Jensen, K., D. Mayntz, S. Toft, D. Raubenheimer & S. J. Simpson (2011): Prey nutrient composition has different effects on Pardosa wolf spiders with dissimilar life histories. – Oecologia 165: 577–583.

Jiménez-Cortés, J. G., M. A. Serrano-Meneses & A. Córdoba-Aguilar (2012): The effects of food shortage during larval development on adult body size, body mass, physiology and developmental time in a tropical damselfly. – Journal of Insect Physiology 58: 318–326.

Klausmeier, C. A., E. Litchman, T. Daufresne & S. A. Levin. (2004): Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. – Nature 429: 171–174.

Kozłowski, J. (1992): Optimal allocation of resources to growth and reproduction: implications for age and size at maturity. – Trends in Ecology & Evolution 7: 15–19.

Kruskal, W. H. & W. A. Wallis (1952): Use of ranks in one-criterion variance analysis. – Journal of the American Statistical Association 47: 583–621.

Lee, K. P., D. Raubenheimer, S. T. Behmer & S. J. Simpson (2003): A correlation between macronutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta (Walker). – Journal of Insect Physiology 49: 1161–1171.

Mann, H. B. & D. R. Whitney (1947): On a test of whether one of two random variables is stochastically larger than the other. – Annals of Mathematical Statistics 18: 50–60.

Mertz, W. (1981): The essential trace elements. – Science 213: 1332–1338.

Nestel, D., D. Tolmasky, A. Rabossi & L. A. Quesada-Allué. (2003): Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). – Annals of the Entomological Society of America 96: 237–244.

Norton, R. A. & V. M. Behan-Pelletier (1991): Calcium carbonate and calcium oxalate as cuticular hardening agents in oribatid mites (Acari: Oribatida). – Canadian Journal of Zoology 69: 1504–1511.

Nunney, L. (1996): The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: an example of a fitness trade‐off. – Evolution 50: 1193–1204.

Olofsson, H., J. Ripa & N. Jonzén (2009): Bet-hedging as an evolutionary game: the trade-off between egg size and number. – Proceedings of the Royal Society of London B: – Biological Sciences 276: 2963–2969.

Pachl, P., K. Domes, G. Schulz, R. A. Norton, S. Scheu, I. Schaefer & M. Maraun (2012): Convergent evolution of defense mechanisms in oribatid mites (Acari, Oribatida) shows no “ghosts of predation past”. – Molecular Phylogenetics and Evolution 65: 412–420.

R Core Team (2016): R: A language and environment for statistical computing. – R Foundation for Statistical Computing, Vienna, Austria [http://www.R-project.org].

Ramsay, S. L. & D. C. Houston (2003): Amino acid composition of some woodland arthropods and its implications for breeding tits and other passerines. – Ibis 145: 227–232.

Raubenheimer, D., K. Lee & S. Simpson (2005): Does Bertrand’s rule apply to macronutrients? – Proceedings of the Royal Society of London B: Biological Sciences 272: 2429–2434.

Robinson, J. G. & K. H. Redford (1986): Body size, diet, and population density of Neotropical forest mammals. American Naturalist 128: 665–680.

Rushton, S. P. & M. Hassall (1983): The effects of food quality on the life history parameters of the terrestrial isopod (Armadillidium vulgare (Latreille)). – Oecologia 57: 257–261.

Seniczak, A. (1998): Preliminary studies on the influence of food on the development and morphology of Archegozetes longisetosus Aoki (Acari, Oribatida) in laboratory conditions. – Ochrona Srodowiska (Poland) 2: 175–180.

Seniczak, A. (2006): The effect of density on life-history parameters and morphology of Archegozetes longisetosus Aoki, 1965 (Acari: Oribatida) in laboratory conditions. – Biological Letters 43: 209–213.

Seniczak, A., A. Ligocka, S. Seniczak & Z. Paluszak (2016): Effects of green algae and napa cabbage on life-history parameters and gut microflora of Archegozetes longisetosus (Acari: Oribatida) under laboratory conditions. – Biological Letters 53: 67–78.

Simmons, L. (1987): Female choice contributes to offspring fitness in the field cricket, Gryllus bimaculatus (De Geer). – Behavioral Ecology and Sociobiology 21: 313–321.

Smrz, J. & R. A. Norton (2004): Food selection and internal processing in Archegozetes longisetosus (Acari: Oribatida). – Pedobiologia 48: 111–120.

Spearman, C. (1904): “General Intelligence”, objectively determined and measured. – The American Journal of Psychology 15: 201–292.

Subias, L. S. (2004): Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes, Oribatida) del mundo. – Graellisa 60: 3–305.

Wilcoxon, F. (1945): Individual comparisons by ranking methods. – Biometrics Bulletin 1: 80–83.

Zanotto, F., S. Simpson & D. Raubenheimer (1993): The regulation of growth by locusts through post‐ingestive compensation for variation in the levels of dietary protein and carbohydrate. – Physiological Entomology 18: 425–434.




How to Cite

Brückner, A. ., Schuster, R. ., Wehner, K. ., & Heethoff, M. . (2018). Effects of nutritional quality on the reproductive biology of Archegozetes longisetosus (Actinotrichida, Oribatida, Trhypochthoniidae). SOIL ORGANISMS, 90(1), 1–12. Retrieved from http://soil-organisms.org/index.php/SO/article/view/68