Soil fauna contribution to winter decomposition in subalpine grasslands


  • Sylvain Coq CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE. 1919, route de Mende, F-34293 Montpellier cedex 5, France
  • Sébastien Ibanez Laboratoire d’Ecologie Alpine UMR CNRS 5553 Université de Savoie F-73376, Le Bourget-du-lac, France



detritivorous fauna, Patzkea paniculata, Dactylis glomerata, litterbags, mesh size


Cold biomes significantly contribute to the global carbon cycle, and decomposition in these ecosystems is expected to be affected by climatic change. Modifications of snow cover patterns are expected to affect litter decomposition, but the underlying mechanisms remain unclear. In this study, we investigated whether soil meso- and microfauna significantly contribute to wintertime decomposition. Using litterbags with two mesh sizes (68 µm and 1500 µm), we found that small mesh litterbags reduced winter decomposition in the field by 3.4 % for Patzkea paniculata litter and by 18.9 % for Dactylis glomerata litter, indicating a significant contribution of soil meso- and microfauna to litter decomposition under the snowpack. Whereas previous studies showed that winter decomposition was not related to the soil fauna community, our results suggest that this community, and its possible alteration by climate change, may impact litter decomposition and carbon dynamics in cold biomes.



Aerts, R. (2006): The freezer defrosting: global warming and litter decomposition rates in cold biomes. – Journal of Ecology 94: 713–724.

Baptist, F., N. G. Yoccoz & P. Choler (2010): Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. – Plant and Soil 328: 397–410.

Bates, D., M. Maechler & B. Bolker (2012): lme4: Linear mixed-effects models using S4 classes. – R package version 0999375-39.

Bernard, L., A. Foulquier, C. Gallet, S. Lavorel & J. C. Clément (2019): Effects of snow pack reduction and drought on litter decomposition in subalpine grassland communities. – Plant and Soil 435: 225–238.

Bokhorst, S., G. Phoenix, J. Bjerke, T. Callaghan, F. Huyer‐Brugman & M. Berg (2012): Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. – Global Change Biology 18:1152–1162.

Bokhorst, S., D. B. Metcalfe & D. A. Wardle (2013): Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. – Soil Biology and Biochemistry 62:157–164.

Coq, S., J. Nahmani, R. Resmond, J. Segrestin, J. F. David, P. Schevin & E. Kazakou (2018): Intraspecific variation in litter palatability to macroarthropods in response to grazing and soil fertility. – Functional Ecology 32: 2615–2624.

Crowther, T. W., J. van den Hoogen, J. Wan, M. A. Mayes, A. D. Keiser, L. Mo, C. Averill & D. S. Maynard (2019): The global soil community and its influence on biogeochemistry. – Science 365: eaav0550.

Fortunel, C., E., Garnier, R. Joffre, E. Kazakou, H. Quested, K. Grigulis, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, H. Freitas, C. Golodets, C. Jouany, J. Kigel, M. Kleyer, V. Lehsten, J. Leps, T. Meier, R. Pakeman, M. Papadimitriou, V. P. Papanastasis, F. Quetier, M. Robson, M. Sternberg, J. P. Theau, A. Thebault & M. Zarovali (2009): Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. –Ecology 90: 598–611.

Fox, J. & S. Weisberg (2010): An R companion to applied regression. – Sage, Thousand Oaks, CA.

García-Palacios, P., F. T. Maestre, J. Kattge & D. H. Wall (2013): Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. – Ecology Letters 16:1045–1053.

Gavazov, K. S. (2010): Dynamics of alpine plant litter decomposition in a changing climate. – Plant and Soil 337: 19–32.

Gross, N., K. Suding, S. Lavorel & C. Roumet (2007): Complementarity as a mechanism of coexistence between functional groups of grasses. – Journal of Ecology 95: 1296–1305.

Hågvar, S. & E. B. Hågvar (2011): Invertebrate activity under snow in a South-Norwegian spruce forest. – Soil Organisms 83: 187–209.

Hobbie, S. E. & F. S. Chapin (1996): Winter regulation of tundra litter carbon and nitrogen dynamics Biogeochemistry 35: 327–338.

Hobbie, S. E., J. P. Schimel, S. E. Trumbore & J. R. Randerson (2000): Controls over carbon storage and turnover in high-latitude soils. – Global Change Biology 6: 196–210.

Ibanez, S., L. Bernard, S. Coq, M. Moretti, S. Lavorel & C. Gallet (2013): Herbivory differentially alters litter dynamics of two functionally contrasted grasses. – Functional Ecology 27: 1064–1074.

IPCC (Intergovernmental Panel on Climate Change) (2013): Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. – Stocker T. F, G. K. Qin, M. Plattner, S. K. Tignor, S. K. Allen, V. Bex & P. M. Midgley (eds). – Cambridge University Press: 1535 pp.

Lenth, R. (2019): emmeans: Estimated Marginal Means, aka Least-Squares Means. – R package version 1.3.2. [].

Liu, Y., L. Wang, R. He, Y. Chen, Z. Xu, B. Tan , L. Zhang, J. Xiao, P. Zhu, L. Chen, L. Guo & J. Zhang (2019): Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. – Scientific Reports 9: 1–12.

Loranger-Merciris, G., D. Imbert, F. Bernhard-Reversat, P. Lavelle & J. F. Ponge (2008): Litter N-content influences soil millipede abundance, species richness and feeding preferences in a semi-evergreen dry forest of Guadeloupe (Lesser Antilles). – Biology and Fertility of Soils 45: 93–98.

Makkonen, M., M. P. Berg, J. R. Van Hal, T. V. Callaghan, M. C. Press & R. Aerts (2011): Traits explain the responses of a sub-arctic Collembola community to climate manipulation. – Soil Biology and Biochemistry 43: 377–384.

Quadros, A. F., M. Zimmer, P. B. Araujo & J. G. Kray (2014): Litter traits and palatability to detritivores: a case study across bio-geographical boundaries. – Nauplius 22: 103–11.

R Development Core Team (2011): R: A Language and Environment for Statistical Computing vol R Foundation for Statistical Computing. – Vienna, Austria.

Saccone, P., S. Morin, F. Baptist, J. M. Bonneville, M. P. Colace, F. Domine, M. Faure, R. Geremia, J. Lochet, F. Poly, S. Lavorel & J. C. Clément (2013): The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. – Plant and Soil 363: 215–229.

Schinner, F. (1982): Soil microbial activities and litter decomposition related to altitude. – Plant and Soil 65: 87–94.

Seeber, J., G. Seeber, W. Kössler, R. Langel, S. Scheu & E. Meyer (2005): Abundance and trophic structure of macro-decomposers on alpine pastureland (Central Alps, Tyrol): effects of abandonment of pasturing. – Pedobiologia 49: 221–228.

van Geffen, K. G., M. P. Berg & R. Aerts (2011): Potential macro-detritivore range expansion into the subarctic stimulates litter decomposition: a new positive feedback mechanism to climate change? – Oecologia 167: 1163–1175.

Wall, D. H., M. A. Bradford, M. G. St John, J. A. Trofymow, V. Behan-Pelletier, D. E. Bignell, J. M. Dangerfield, W. J. Parton, J. Rusek & W. Voigt (2008): Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. – Global Change Biology 14: 2661–2677.




How to Cite

Coq, S. ., & Ibanez, S. . (2019). Soil fauna contribution to winter decomposition in subalpine grasslands. SOIL ORGANISMS, 91(3), 107–112.