Organic farming and moderate tillage change the dominance and spatial structure of soil Collembola communities but have little effects on bulk abundance and species richness

Authors

  • Mikhail B. Potapov Moscow State Pedagogical University
  • Anna I. Bokova Moscow State Pedagogical University
  • Charlene Janion-Scheepers University of Cape Town; Iziko Museums of South Africa
  • Natalia A. Kuznetsova Moscow State Pedagogical University
  • Miryam S. Merk University of Goettingen
  • Ksenia S. Panina Moscow State Pedagogical University
  • Anton M. Potapov University of Göttingen; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; University of Leipzig
  • Anna K. Saraeva Russian Academy of Sciences

DOI:

https://doi.org/10.25674/so94iss2id173

Keywords:

Spatial distribution, fractal design, abundance, species richness, dominance

Abstract

Organic farming technologies are increasingly being used to reduce environmental pollution and grow environmentally friendly products. An integrated approach to assessing the effectiveness of these technologies requires studying the reaction of various components of agroecosystems, including soil fauna. Collembola (springtails) are among the most abundant soil arthropods that regulate nutrient cycling in crop fields. However, the effects of different management types on Collembola communities are context-dependent, and spatial organization of these communities remains unexplored. Here, we studied winter wheat fields in European Russia using a large spatial sampling including 486 samples which were arranged in a nested fractal pattern and grouped into 18 meter plots across six agricultural fields. We compared fields with organic farming (no mineral fertilizer and pesticide applications, moderate tillage) with conventional farming ones. To account for spatial configuration of the sampling design, we applied generalized linear mixed-effects models. The organic farming with moderate tillage changed the structure of Collembola communities by reducing the effect of species over-domination. However, the total abundance and species richness of Collembola was only little and often non-significantly higher under organic than in under the conventional management type. The applied multiscale approach revealed larger spatial aggregations in Collembola communities in organic than in conventional management. Overall, we showed that the effect of organic farming technologies changes taxonomic and spatial structures of Collembola communities, rather their bulk characteristics, such as density and abundance. Functional consequences of these changes are yet to be discovered.

References

Agusti, N., S. P. Shayler, J. D. Harwood, I. P. Vaughan, K. D. Sunderland & W. O. C. Symondson (2003): Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. – Molecular Ecology 12(12): 3467–3475.

Aldoshin, S. S., E. N. Gorbacheva, S. G. Myshliakov & A. S. Skachkova (2015): Space monitoring of agricultural lands of Kaluga Region. – Geoprofi 4: 10–14. [in Russian].

Altieri, M. A. (1999): The ecological role of biodiversity in agroecosystems. – Agriculture, Ecosystems & Environment 74: 19–31.

Alvarez, T., G. K. Frampton & D. Goulson (2001): Epigeic Collembola in winter wheat under organic, integrated and conventional farm management regimes – Agriculture, Ecosystems & Environment: 83(1–2): 95–110.

Baker, C. J., K. E. Saxton, W. R. Ritchie, W. C. T. Chamen, D. C. Reicosky, F. Ribeiro, S. E. Justice & P. R. Hobbs (2007): No-tillage seeding in conservation agriculture, 2nd edition. Edited by Baker, C. J. & K. E. Saxton. – Food and Agriculture Organization of the United Nations: 326 pp.

Bedoussac, L., E.-P. Journet, H. Hauggaard-Nielsen, C. Naudin, G. Corre-Hellou, E. S. Jensen, L. Prieur & E. Justes (2015): Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review – Agronomy for Sustainable Development 35: 911–935.

Bengtsson, J., J. Ahnström & A.-C.Weibull (2005): The effects of organic agriculture on biodiversity and abundance: a meta-analysis. – Journal of Applied Ecology 42 (2): 261–269.

Bilde, T., J. A. Axelsen & S. Toft (2000): The value of Collembola from agricultural soils as food for a generalist predator. – Journal of applied ecology 37(4): 672-683.

Chernova, N. M. (1982): Distribution of microarthropods in arable lands. – In: Antropogennoye Vozdeystviye na Faunu Pochv. – Moscow: 3–10. [in Russian].

Choi, W. I., D. L. Moorhead, D. A. Neher & M. I. Ryoo (2006): A modeling study of soil temperature and moisture effects on population dynamics of Paronychiurus kimi (Collembola: Onychiuridae). – Biology and Fertility of Soils 43(1): 69–75.

Culik, M.P., J. L. Souza & J. A.Ventura (2002): Biodiversity of Collembola in tropical agricultural environments of Espírito Santo, Brazil. – Applied Soil Ecology 21: 49–58.

Czarnecki, A. J. & R. Paprocki (1997): An attempt to characterize complex properties of agroecosystems based on soil fauna, soil properties and farming system in the north of Poland. – Biological Agriculture & Horticulture 15(1–4): 11–23.

Dekkers, T. B. M., P. A. Werff & P. A. M. Amelsvoort (1994): Soil Collembola and Acari related to farming systems and crop rotations in organic farming. – Acta Zoologica Fennica 195: 28–31.

Demetrio, W., O. Assis, C. C. Niva, M. L. C. Bartz, L. Paes, G. Cardoso, S. Ferreira, E. Santos, M. Marzagao, H. Nadolny et al. (2020): Comparison of soil invertebrate communities in organic and conventional production systems in Southern Brazil. – Soil Organisms 92(2): 143–157.

Dray, S., R. Pelissier, P. Couteron, M.-J. Fortin, P. Legendre, P. R. Peres-Neto, E. Bellier, R. Bivand, F. G. Blanchet, M. Cáceres et al. (2012): Community ecology in the age of multivariate multiscale spatial analysis. – Ecological Monographs 82(3): 257–275.

Ettema, C. H. & D. A. Wardle (2002): Spatial soil ecology. – Trends in ecology & evolution 17(4): 177–183.

Endlweber, K., M. Schädler & S. Scheu (2006): Effects of foliar and soil insecticide applications on the collembolan community of an early set-aside arable field. – Applied Soil Ecology 31(1-2): 136-146.

Endlweber, K. & S. Scheu (2007): Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. – Biology and Fertility of Soils 43: 741–749.

Filho, L. C. I. O., O. K. Filho, D. Baretta, C. A. S. Tanaka & J. P. Sousa (2016): Collembola Community Structure as a Tool to Assess Land Use Effects on Soil Quality. – Revista Brasileira de Ciência do Solo 40: 1–18.

Filser, J. (2002): The role of Collembola in carbon and nitrogen cycling in soil: Proceedings of the Xth international Colloquium on Apterygota, České Budějovice 2000: Apterygota at the beginning of the third millennium. – Pedobiologia 46(3–4): 234–245.

Filser, J., H. Fromm, R. E. Nagel & K. Winter (1995): Effects of previous intensive agricultural management on microorganisms and the biodiversity of soil fauna. – Plant and Soil 170(1): 123–129.

Filser, J., J. H. Faber, A. V. Tiunov, L. Brussaard, J. Frouz, G. D. Deyn, A. V. Uvarov, M. P. Berg, P. Lavelle, M. Loreau et al. (2016): Soil fauna: key to new carbon models. – Soil 2(4): 565–582.

Finger, R., S. M. Swinton, N. El Benni & A. Walter (2019): Precision farming at the nexus of agricultural production and the environment. – Annual Review of Resource Economics 11(1): 313–335.

Fjellberg, A. (1998): The Collembola of Fennoscandia and Denmark. Part 1: Poduromorpha. Fauna Entomologica Scandinavica. – Brill Academic, Leiden.

Fjellberg, A. (2007): The Collembola of Fennoscandia and Denmark. Part II: Entomobryomorpha and Symphypleona. Fauna Entomologica Scandinavica. – Brill Academic, Leiden.

Fromm, H., K. Winter, J. Filser, R. Hantschel & F. Beese (1993): The influence of soil type and cultivation system on the spatial distributions of the soil fauna and microorganisms and their interactions. – Geoderma 60(1-4): 109–118.

Gao, M., D. Liu, D. Wu & X. Zhang (2014): Spatial autocorrelation of aboveground and belowground mite communities in farmland of the Sanjiang Plain. – Acta Pedologica Sinica 51(6): 1342–1350.

Giller, K. E., E. Witter & S. P. Mcgrath (1998): Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. – Soil biology and biochemistry 30(10-11): 1389–1414.

Goncharov, A. A., T. I. Chernov, N. A. Kuznetsova, I. P. Taranets, A. K. Tkhakakhova & M. I. Kartashov (2020): Springtails Parisotoma notabilis (Collembola: Isotomidae) indicate favourable conditions for Fusarium species in arable soil: an experimental study in a winter wheat field. – In: Bagirov, R., Yu. Maximova, E. Subbotina, M. Shcherbakov & A. Simakova (eds): Conceptual and applied aspects of scientific research and education in the field of invertebrate zoology: сollection of articles V International conference. – Tomsk October 26–28. – Tomsk, Tomsk State University Press: 55–58.

Greenslade, P. J., I. A. Reid & I. J. Packer (2010): Herbicides have negligible effects on ants and springtails in an Australian wheat field. – Soil Biology and Biochemistry 42: 1172–1175.

Hole, D. G., A. J. Perkins, J. D. Wilson, I. H. Alexander, P. V. Grice & A. D. Evans (2005): Does organic farming benefit biodiversity. – Biological Conservation 122: 113–130.

Hopkin, S. P. (1997): Biology of the springtails (Insecta: Collembola). – Oxford University Press, Oxford, New York, Tokyo: 330 pp.

House, J. & R. W. Parmelee (1985): Comparison of soil arthropods and earthworms from conventional and no-tillage agroecosystems. – Soil and Tillage Research 5 (4): 351–360.

House, G. J., A. D. Worsham, T. J. Sheets & R. E. Stinner (1987): Herbicide effects on soil arthropod dynamics and wheat straw decomposition in a North Carolina no-tillage agroecosystem. – Biology and fertility of soils 4(3): 109–114.

Kachinsky, N. A. (1965): Soil physics. Moscow: Publ. House High School. 321 pp. [in Russian].

Kardol, P., W. N. Reynolds, R. J. Norby & A. T. Classen (2011): Climate change effects on soil microarthropod abundance and community structure. – Applied Soil Ecology 47(1): 37–44.

Kuznetsova, N. A. (2009): Communities in extreme natural and anthropogenic conditions: a case study of collembolan taxocoenoses. – In: Golovatch S. I., O. L. Makarova, A. B. Babenko & L. D. Penev (eds): Species and Communities in Extreme Environments. – Pensoft Publishers & KMK Scientific Press, Sofia-Moscow: 441–458.

Kuznetsova, N. A. & A. K. Saraeva (2018): Beta-diversity partitioning approach in soil zoology: A case of Collembola in pine forests. – Geoderma 332: 142–152.

Kuznetsova N. A., M. B. Potapov, K. S. Panina, M. D. Antipova & A. I. Bokova (2021): Collembola of winter wheat fields in the Kaluga Region: conservation treatment versus conventional one. Version 1.6. Moscow Pedagogical State University (MPGU). Sampling event dataset [https://doi.org/10.15468/rv6g98].

Lavelle, P., T. Decaëns, M. Aubert, S. Barot, M. Blouin, F. Bureau, P. Margerie, P. Mora & J.-P. Rossi (2006): Soil invertebrates and ecosystem services. – European Journal of Soil Biology 42: 3–15.

Maeder, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried & U. Niggli (2002): Soil Fertility and Biodiversity in Organic Farming. – Science 296: 1694–1697.

Magurran, A. (1991): Ecological diversity and its measurement. London etc.: Chapmen a. Hall, 179 pp.

Marsh, C. J. & R. M. Ewers (2013): A fractal‐based sampling design for ecological surveys quantifying β‐diversity. – Methods in Ecology and Evolution 4(1): 63–72.

Ortiz, D. C., M. A. B. Santos, L. C. I. Oliveira Filho, P. N. Pompeo, J. C. Niemeyer, O. K. Filho, C. Riviera, D. M. Baretta, J. A. Sampietro & D. Baretta (2019): Diversity of springtails (Collembola) in agricultural and forest systems in Southern Santa Catarina. – Biota Neotropica 19(3): 1–9.

Paoletti, M. G., D. Pimentel, B. R. Stinner & D. Stinner (1992): Agroecosystem biodiversity: matching production and conservation biology. – Agriculture, Ecosystems & Environment 40(1–4): 3–23.

Potapov, A., B. C. Bellini, S. L. Chown, L. Deharveng, F. Janssens, L. Kováč, N. Kuznetsova, J.-F. Ponge, M. Potapov, P. Querner, D. Russell, X. Sun, F. Zhang & M. P. Berg (2020): Towards a global synthesis of Collembola knowledge – challenges and potential solutions. – Soil Organisms 92(3): 161–188.

Pretty, J. (2008): Agricultural sustainability: concepts, principles and evidence. – Philosophical Transactions of the Royal Society B: Biological Sciences 363(1491): 447–465.

Reddersen, J. (1997): The arthropod fauna of organic versus conventional cereal fields in Denmark. – Biological Agriculture & Horticulture 15(1–4): 61–71.

Rusek, J. (1998): Biodiversity of Collembola and their functional role in the ecosystem. – Biodiversity & Conservation 7(9): 1207–1219.

Santos, M. A. B., L. C. Iunes, O. Filho, P. N. Pompeo, D. C. Ortiz, A. L. Mafra, O. K. Filho & D. Baretta (2018): Morphological diversity of springtails in land use systems. – Revista Brasileira de Ciência do Solo: 1–19.

Saraeva, A. K., M. B. Potapov & N. A. Kuznetsova (2015): Different-scale distribution of collembola in homogenous ground vegetation: Stability of parameters in space and time. – Entomological Review 95(6): 699–714.

Schneider, C. & C. A. D’Haese (2013): Morphological and molecular insights on Megalothorax: the largest Neelipleona genus revisited (Collembola). – Invertebrate Systematics 27(3): 317–364.

Schrader, S., J. Kiehne, T.-H. Anderson, H.-M. Paulsen & G. Rahmann (2006): Development of Collembolans after conversion towards organic farming. – Aspects of Applied Biology 79: 181–185.

Schultz, B. J., J. R. Lensing & D. H. Wise (2006): Effects of altered precipitation and wolf spiders on the density and activity of forest-floor Collembola. – Pedobiologia 50(1): 43–50.

Six, J., C. Feller, K. Denef, S. Ogle, J. C. de Moraes Sa & A. Albrecht (2002): Soil organic matter, biota and aggregation in temperate and tropical soils-Effects of no-tillage. – Agronomie 22(7-8): 755–775.

Sousa J. P., T. Bolger, M. M. Gama, T. Lukkari, J.-F. Ponge, C. Simon, G. Traser, A. J. Vanbergen, A. Brennan, F. Dub et al. (2006): Changes in Collembola richness and diversity along a gradient of land-use intensity: a pan European study. – Pedobiologia 50(2): 147–156.

Triplett, G. B. & W. A. Dick (2008): No-tillage crop production: a revolution in agriculture! – Celebrate the Centennial [A Supplement to Agronomy Journal]: 154–165.

Vellend, M. (2010): Conceptual Synthesis in Community Ecology. – The Quarterly Review of Biology 85: 183–206.

Vorobyova, L. A. (1998): Chemical analysis of soils: Textbook. – Moscow University Press, 272 pp. [in Russian].

Willer, H. & M. Youssefi (2005): The World of Organic Agriculture. Statistics and Emerging Trends 2005. – International Federation of Organic Agriculture Movements (IFOAM), Bonn Germany, 7th, revised edition, slightly abridged version: 189 pp.

Widenfalk, L. A., A. Malmströma, M. P. Berg, & J. Bengtsson (2016): Small-scale Collembola community composition in a pine forest soil – overdispersion in functional traits indicates the importance of species interactions. – Soil Biology and Biochemistry 103: 52–62 [http://dx.doi.org/10.1016/j.soilbio.2016.08.006].

World Reference Base for Soil Resources (2014) International soil classification system for naming soils and creating legends for soil maps. – World Soil Resources Reports No. update 2015. 106 FAO, Rome. IUSS Working Group WRB: 203 pp.

Downloads

Published

2022-08-01

How to Cite

Potapov, M. B., Bokova, A. I., Janion-Scheepers, C., Kuznetsova, N. A., Merk, M. S., Panina, K. S., Potapov, A. M., & Saraeva, A. K. (2022). Organic farming and moderate tillage change the dominance and spatial structure of soil Collembola communities but have little effects on bulk abundance and species richness. SOIL ORGANISMS, 94(2), 99–110. https://doi.org/10.25674/so94iss2id173

Issue

Section

ARTICLES