A call to characterize functional mycobiome responses to experimental climate change

Authors

DOI:

https://doi.org/10.25674/so94iss3id300

Keywords:

climate change, fungi, genomics, global change, metagenomics

Abstract

The impacts of climate change are increasingly threatening terrestrial ecosystems. Understanding how this will influence fungal communities (i.e. the mycobiome) is one of the most consequential domains of climate change research because fungal functions, like decomposition and mycorrhizal symbiosis, feedback to influence climate change. Efforts to study fungal functioning have been stymied by technological limitations and the complexity of fungal biology compared to prokaryotes, but recent molecular advances now enable us to study their functional responses to climate change in greater detail. Here, we announce an open invitation for collaboration with researchers across the globe studying terrestrial ecosystem responses to climate change. In particular, we invite submissions of soil or DNA extracts isolated from climate change field experiments for detailed characterization of fungal community structure using full-length ITS DNA metabarcoding and a novel probe capture and enrichment next generation sequencing technique to quantify fungal functional genes involved in oxidative and hydrolytic enzyme biosynthesis, carbohydrate metabolism, organic and inorganic nitrogen cycling, phosphorus acquisition, stress tolerance, and mycorrhizal symbiosis. By contributing samples, supporting analyses, and helping to draft manuscripts, co-authorship will be offered to all collaborators. We will also freely provide the unique datasets we generate from samples collected at your experiment for downstream analyses. We hope that by crowd-sourcing collaborations, we will be able to establish consistent ecological principles for how fungi respond to climate change, enabling us to more accurately forecast the impacts of future global changes on ecosystem function.

Downloads

Download data is not yet available.

References

Alberton, O., T. W. Kuyper & A. Gorissen (2007): Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. – Plant and Soil 296: 159–172.

Anthony, M. A., K. A. Stinson, J. A. Moore & S. D. Frey (2020): Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment. – Oecologia 194: 659–672.

Anthony, M. A., M. Knorr, J. A. M. Moore, M. Simpson & S. D. Frey (2021): Fungal community and functional responses to soil warming are greater than for soil nitrogen enrichment. – Elementa: Science of the Anthropocene 9: 000059.

Baldrian, P., L. Bell-Dereske, C. Lepinay, T. Větrovský & P. Kohout (2022): Fungal communities in soils under global change. – Studies in Mycology 103: 1–24.

Brempong, S. A. (2012): Microarray Technology and Its Applicability in Soil Science – A Short Review. – Open Journal of Soil Science 2: 333–340.

Brundrett, M. C. & L. Tedersoo (2018): Evolutionary history of mycorrhizal symbioses and global host plant diversity. – New Phytologist 220: 1108–1115.

Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef & E. Paul (2013): The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? – Global change biology 19: 988–995.

Donovan, P. D., G. Gonzalez, D. G. Higgins, G. Butler & K. Ito (2018): Identification of fungi in shotgun metagenomics datasets. – PLOS ONE 13: e0192898.

Finestone, J., P. H. Templer & J. M. Bhatnagar (2022): Soil Fungi Exposed to Warming Temperatures and Shrinking Snowpack in a Northern Hardwood Forest Have Lower Capacity for Growth and Nutrient Cycling. – Frontiers in Forests and Global Change 5.

Floudas, D., M. Binder, R. Riley, K. Barry, R. A. Blanchette, B. Henrissat, A. T. Martínez, R. Otillar, J. W. Spatafora & J. S. Yadav (2012): The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. – Science 336: 1715–1719.

Geml, J., L. N. Morgado, T. A. Semenova, J. M. Welker, M. D. Walker & E. Smets (2015): Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi. – FEMS Microbiology Ecology 91.

Hao, Z., A. AghaKouchak, N. Nakhjiri & A. Farahmand (2014): Global integrated drought monitoring and prediction system. – Scientific Data 1:140001.

He, L., J. L. Mazza Rodrigues, N. A. Soudzilovskaia, M. Barceló, P. A. Olsson, C. Song, L. Tedersoo, F. Yuan, F. Yuan, D. A. Lipson & X. Xu (2020): Global biogeography of fungal and bacterial biomass carbon in topsoil. – Soil Biology and Biochemistry 151: 108024.

Jassey, V. E. J., M. K. Reczuga, M. Zielińska, S. Słowińska, B. J. M. Robroek, P. Mariotte, C. V. W. Seppey, E. Lara, J. Barabach, M. Słowiński & et al. (2018): Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. – Global Change Biology 24:972–986.

Langille, M. G., J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, J. A. Reyes, J. C. Clemente, D. E. Burkepile, R. L. Vega Thurber & R. Knight (2013): Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. – Nature biotechnology 31:814–821.

Moore, J. A. M., M. A. Anthony, G. J. Pec, L. K. Trocha, A. Trzebny, K. M. Geyer, L. T. A. van Diepen & S. D. Frey (2021): Fungal community structure and function shifts with atmospheric nitrogen deposition. – Global Change Biology 27: 1349–1364.

Morrison, E. W., A. Pringle, L. T. van Diepen, A. S. Grandy, J. Melillo & S. D. Frey (2019): Warming alters fungal communities and litter chemistry with implications for soil carbon stocks. – Soil Biology and Biochemistry 132: 120–130.

Pörtner, H.-O., D. C. Roberts, H. Adams, C. Adler, P. Aldunce, E. Ali, R. A. Begum, R. Betts, R. B. Kerr & R. Biesbroek (2022): Climate change 2022: Impacts, adaptation and vulnerability. – IPCC Sixth Assessment Report.

Raich, J. W. & W. H. Schlesinger (1992): The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. – Tellus B: Chemical and Physical Meteorology 44: 81–99.

Romero-Olivares, A. L., J. W. Taylor & K. K. Treseder (2015): Neurospora discreta as a model to assess adaptation of soil fungi to warming. – BMC Evolutionary Biology 15: 198.

Schneider, T., K. M. Keiblinger, E. Schmid, K. Sterflinger-Gleixner, G. Ellersdorfer, B. Roschitzki, A. Richter, L. Eberl, S. Zechmeister-Boltenstern & K. Riedel (2012): Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. – The ISME journal 6: 1749–1762.

Sokol, N. W., E. D. Whalen, A. Jilling, C. Kallenbach, J. Pett-Ridge & K. Georgiou (2022): Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: A trait-based perspective. – Functional Ecology 36: 1411–1429.

Tedersoo, L. & S. Anslan (2019): Towards PacBio‐based pan‐eukaryote metabarcoding using full‐length ITS sequences. – Environmental microbiology reports 11: 659–668.

Treseder, K. K., R. Berlemont, S. D. Allison & A. C. Martiny (2018): Drought increases the frequencies of fungal functional genes related to carbon and nitrogen acquisition. – PLOS ONE 13: e0206441.

van Diepen, L. T. A., S. D. Frey, E. A. Landis, E. W. Morrison & A. Pringle (2017): Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter. – Ecology 98: 5–11.

Zhou, Z., C. Wang & Y. Luo (2020): Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. – Nature Communications 11: 3072.

Downloads

Published

2022-12-01

Issue

Section

CALL FOR COLLABORATION

How to Cite

Anthony, M., & Gessler, A. (2022). A call to characterize functional mycobiome responses to experimental climate change . Soil Organisms, 94(3), 171–174. https://doi.org/10.25674/so94iss3id300