Does logging affect soil biodiversity and its functions? A review
DOI:
https://doi.org/10.25674/so95iss3id330Keywords:
Silvicultural practices, Selective logging, Clear-cutting, Soil fauna, Ecosystem functioning, Macrofauna, MicroorganismAbstract
Silvicultural practices affect over 30 % of the global forest area and are a major driver of forest degradation. Logging is a forest
management practice that is becoming increasingly widespread, since it is an important source of income for developing countries.
Despite the expanding body of research on aboveground communities, little is known about the effects of logging on belowground
communities. We conducted a qualitative systematic literature review to assess the current state of knowledge about the impact of
logging on soil biodiversity and ecosystem functions. We addressed the effects of logging operations (e.g., clear-cutting, selective
logging) on i) soil organisms (from microorganisms to soil fauna) and ii) soil functions mediated by soil biota. In general, the
reviewed articles reported a negative effect of logging operations on abundance and diversity of microorganisms. Regarding soil
fauna, most studies focus on insect taxa, with the impact on other soil fauna taxa remaining poorly understood. Decomposition was
the most commonly studied ecosystem function. In general, the literature has reported negative effects of logging on soil functions;
however, some studies found neutral or positive responses. This review highlights that logging operations have detrimental effects
on a variety of different groups of organisms (e.g., microorganisms and insects) and functions (e.g., decomposition, microbial activity,
bioturbation). However, on the basis of the evidence to date, low-intensity logging operations can be a beneficial practice for
the conservation of soil organisms and ecosystem functions.
Downloads
References
Alice‐Guier, F. E., F. Mohren & P. A. Zuidema (2020): The life cycle carbon balance of selective logging in tropical forests of Costa Rica. – Journal of Industrial Ecology 24: 534–547.
Almeida, E. J., F. Luizão & D. de J. Rodrigues (2015): Litterfall production in intact and selectively logged forests in southern of Amazonia as a function of basal area of vegetation and plant density. – Acta Amazonica 45: 157–166.
Andrew, C., E. Heegaard, R. Halvorsen, F. Martinez-Pena, S. Egli, P. M. Kirk, C. Bassler, U. Büntgen, J. Aldea, K. Høiland (2016): Climate impacts on fungal community and trait dynamics. – Fungal Ecology 22: 17–25.
Atlegrim, O., K. Sjöberg & J. Ball (1997): Forestry effects on a boreal ground beetle community in spring: Selective logging and clear-cutting compared. – Entomologica Fennica 8: 19–26.
Azevedo, R. A. de, Q. C. L. Santos, I. E. Fluck, D. J. Rodrigues, L. D. Battirola & C. de S. Dambros (2021): Selective logging does not alter termite response to soil gradients in Amazonia. – Journal of Tropical Ecology 37: 43–49.
Bardgett, R. D. & W. H. V. D. Putten (2014): Belowground biodiversity and ecosystem functioning. – Nature 515: 505–511.
Barreto-Garcia, P. A. B., S. Gomes Monteiro Batista, E. Forestieri da Gama-Rodrigues, A. de Paula & W. C. Amaral Batista (2021): Short-term effects of forest management on soil microbial biomass and activity in Caatinga dry forest, Brazil. – Forest Ecology and Management 481: 118790.
Basile, M., G., Mikusiński & I. Storch (2019): Bird guilds show different responses to tree retention levels: a meta-analysis. – Global Ecology and Conservation 18: e00615.
Bomfim, B., L. C. R. Silva, R. S. Pereira, A. Gatto, F. Emmert & N. Higuchi (2020): Litter and soil biogeochemical parameters as indicators of sustainable logging in Central Amazonia. – Science of The Total Environment 714: 136780.
Bonan, G. B. (2008): Forests and climate change: forcings, feedbacks, and the climate benefits of forests. – Science 320: 1444–1449.
Both, S., D. M. O. Elias, U. H. Kritzler, N. J. Ostle & D. Johnson 2017: Land use not litter quality is a stronger driver of decomposition in hyperdiverse tropical forest. – Ecology and Evolution 7: 9307–9318.
Bourguignon, T., C. A. L. Dahlsjö, K. A. Salim & T. A. Evans (2018): Termite diversity and species composition in heath forests, mixed dipterocarp forests, and pristine and selectively logged tropical peat swamp forests in Brunei. – Insectes Sociaux 65: 439–444.
Brussaard, L. (2012).: Ecosystem Services Provided by the Soil Biota, in: Wall, D.H., R.D. Bardgett, V. Behan-Pelletier, J.E. Herrick, H. Jones, K. Rittz, J Six., D.R. Strong, W.H. Van der Putten (Eds.), Soil Ecology and Ecosystem Services. Oxford University Press: 1–17.
Carlson, B. S., S. E. Koerner, V. P. Medjibe, L. J. T. White & J. R. Poulsen (2017): Deadwood stocks increase with selective logging and large tree frequency in Gabon. – Global Change Biolology 23: 1648–1660.
Chapin, F. S. I. (2002): Principles of terrestrial ecosystem ecology. Springer- Verlag, New York, New York, NY.
Chen, J., R. L. Chazdon, N. G. Swenson, H. Xu & T. Luo (2021): Drivers of soil microbial community assembly during recovery from selective logging and clear‐cutting. – Journal of Applied Ecology 58: 2231–2242.
Christophel, D., S. Spengler, B. Schmidt, J. Ewald & J. Prietzel (2013): Customary selective harvesting has considerably decreased organic carbon and nitrogen stocks in forest soils of the Bavarian Limestone Alps. – Forest Ecology and Management 305: 167–176.
Dial, R. J., M. D. F. Ellwood, E. C. Turner & W. A. Foster (2006): Arthropod abundance, canopy structure, and microclimate in a Bornean lowland tropical rain forest. – Biotropica 38: 643–652.
Davis, A. J. (2000): Does Reduced-Impact Logging Help Preserve Biodiversity in Tropical Rainforests? A Case Study from Borneo using Dung Beetles (Coleoptera: Scarabaeoidea) as Indicators. – Environmental Entomology 29: 467–475.
de Bello, F., S. Lavorel, S. Díaz, R. Harrington, J. H. C. Cornelissen, R. D. Bardgett, M. P. Berg, P. Cipriotti, C. K. Feld, D. Hering & et al. (2010): Towards an assessment of multiple ecosystem processes and services via functional traits. – Biodiversity Conservation 19: 2873–2893.
da Silva Santana, M., E. M. Andrade, V. Rodriguês Oliveira, B. Barbosa Costa, V. Coelho Silva, M. C. de Freitas, T. J. Ferreira Cunha & V. Giongo (2020): Trophic groups of soil fauna in semiarid: Impacts of land use change, climatic seasonality and environmental variables. – Pedobiologia 89: 150774.
Duguid, M. C. & M. S. Ashton (2013): A meta-analysis of the effect of forest management for timber on understory plant species diversity in temperate forests. – Forest Ecology and Management, 303: 81–90.
Edwards, D. P., T. H. Larsen, T. D. S. Docherty, F. A. Ansell, W. W. Hsu, M. A. Derhé, K.C. Hamer & D. S. Wilcove (2012): Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. – Proceedings of the Royal Society B 278: 82–90.
Edwards, D. P., A. Magrach, P. Woodcock, Y. Ji, N. T. Lim, F. A. Edwards, T. H. Larsen, W. W. Hsu, S. Benedick, C. V. Khen, A. Y. C. Chung, G. Reynolds & et al. (2014): Selective-logging and oil palm: multitaxon impacts, biodiversity indicators, and trade-offs for conservation planning. – Ecology Application 24: 2029–2049.
Eggleton, P., R. Homathevi, D. T. Jones, J. A. MacDonald, D. Jeeva, D. E. Bignell, R. G. Davies & M. Maryati (1999): Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia. – Philosophical Transactions of the Royal Society B 354: 1791–1802.
Entry, J. A., N. M. Stark & H. Loewenstein (1986): Effect of timber harvesting on microbial biomass fluxes in a northern Rocky Mountain forest soil. – Canadian Journal of Forest Research 16: 1076–1081.
FAO (2020): Global Forest Resources Assessment 2020. – Main report, Rome [https://doi.org/10.4060/ca9825en].
Fedrowitz, K., J. Koricheva, S. C. Baker, D. B. Lindenmayer, B. Palik, R. Rosenvald, W. Beese, J. F. Franklin, J. Kouki, E. Macdonald, E. Messier & et al. (2014): Can retention forestry help conserve biodiversity? A meta‐analysis. – Journal of Applied Ecology 51: 1669–1679.
Feldpausch, T. R., E. G. Couto, L. C. Rodrigues, D. Pauletto, M. S. Johnson, T. J. Fahey, J. Lehmann & S. J. Riha (2009): Nitrogen aboveground turnover and soil stocks to 8 m depth in primary and selectively logged forest in southern Amazonia. – Global. Change Biology 16: 1793–1805.
Fimbel, R. A., A. Grajal & J. Robinson (2001): The cutting edge: conserving wildlife in logged tropical forests. – Columbia University Press.
Finér, L., M. Jurgensen, M. Palviainen, S. Piiraine & D. Page-Dumroese (2016): Does clear-cut harvesting accelerate initial wood decomposition? A five-year study with standard wood material. – Forest Ecology and Managment 372: 10–18.
França, F. M., F. S. Frazão, V. Korasaki, J. Louzada & J. Barlow (2017): Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. – Biology Conservation 216: 115–122.
França, F., J. Louzada & J. Barlow (2018): Selective logging effects on ‘brown world’ faecal-detritus pathway in tropical forests: A case study from Amazonia using dung beetles. – Forest Ecology and Management 410: 136–143.
Franklin, J. F., T. A. Spies, R. V. Pelt, A. B. Carey, D. A. Thornburgh, D. R. Berg, D. B. Lindenmayer, M. E. Harmon, W. S. Keeton, D. C. Shaw, K. Bible & J. Chen (2002): Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. – Forest Ecology and Management 155: 399–423.
Gardner, T. A., J. Barlow, I. S. Araujo, T. C. Ávila-Pires, A. B. Bonaldo, J. E. Costa, M. C. Esposito, L.V. Ferreira, J. Hawes, M. M. Hernandez, M. S. Hoogmoed, R. N. Leite & et al. (2008): The cost-effectiveness of biodiversity surveys in tropical forests. – Ecology Letters 11: 139–150.
Guerra, C. A., A. Heintz-Buschart, J. Sikorski, A. Chatzinotas, N. Guerrero-Ramírez, S. Cesarz & N. Eisenhauer (2020): Blind spots in global soil biodiversity and ecosystem function research. – Nature Communications 11: 3870.
Gómez, C. & S. Abril (2011): Selective logging in public pine forests of the central Iberian Peninsula: Effects of the recovery process on ant assemblages. – Forest Ecology and Management 262: 1061–1066.
Gunawardene, N. R., J. D. Majer & J. P. Edirisinghe (2010): Investigating residual effects of selective logging on ant species assemblages in Sinharaja forest reserve, Sri Lanka. – Forest Ecology Management 259: 555–562.
Günter, S., M. Weber, B. Stimm & R. Mosandl (2011): Silviculture in the Tropics, Tropical Forestry. – Springer Berlin Heidelberg, Berlin, Heidelberg.
Gustafsson, L., S. C. Baker, J. Bauhus, W. J. Beese, A. Brodie, A., J. Kouki, D. B. Lindenmayer, A. Lõhmus, G. Martinez-Pastur, G., C. Messier & et al. (2012): Retention forestry to maintain multifunctional Fforests: A world perspective. – BioScience 62: 633–645.
Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice & J. R. G. Townshend (2013): High-resolution global maps of 21st-century forest cover change. – Science 342: 850–853.
Haas, J., H. Schack‑Kirchner & F. Lang (2020): Modeling soil erosion after mechanized logging operations on steep terrain in the Northern Black Forest, Germany. – European Journal Forest Restoration 139: 549–565.
Hasegawa, M., M.T. Ito, T. Yoshida, T. Seino, A. Y. C. Chung & K. Kitayama (2014): The effects of reduced-impact logging practices on soil animal communities in the Deramakot Forest Reserve in Borneo. – Applied Soil Ecology 83: 13–21.
Hewitt, R. E., D. L. Taylor, T. N. Hollingsworth, C. B. Anderson & G. Martinez-Pastur (2018): Variable retention harvesting influences belowground plant-fungal interactions of Nothofagus pumilio seedlings in forests of southern Patagonia. – PeerJ 6: e5008.
Hosaka, T., M. Niino, M. Kon, T. Ochi, T. Yamada, C. Fletcher & T. Okuda (2014): Effects of logging road networks on the ecological functions of dung beetles in Peninsular Malaysia. – Forest Ecology and Management 326: 18–24.
Huang, P. S., I. M. Tso, H. C. Lin, L. K. Lin & C. P. Lin (2011): Effects of thinning on spider diversity of an East Asian subtropical plantation forest. – Zoological Studies 50: 705–717.
Huang, X., S. Li & J. Su (2020): Selective logging enhances ecosystem multifunctionality via increase of functional diversity in a Pinus yunnanensis forest in Southwest China. Selective logging enhances ecosystem multifunctionality via increase of functional diversity in a Pinus yunnanensis forest in Southwest China. – Forest Ecosystems 7: 1– 13.
Ibrahima, A., Z. E. A. Mvondo & J. Ntonga (2010): Fine root production and distribution in the tropical rainforests of south-western Cameroon: effects of soil type and selective logging. – iForest 3: 130–136.
IPCC (2003): Good Practice Guidance for Land Use, Land-Use Change and Forestry. Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe & F. Wagner (eds). – Institute for Global Environmental Strategies (IGES), Kanagawa.
Jaureguiberry, P., N. Titeux, M. Wiemers, D. E. Bowler, L. Coscieme, A. S. Golden, C. A. Guerra, U. Jacob, Y. Takahashi, J. Bettele, S. Díaz, Z. Molnár & A. Purvis (2022): The direct drivers of recent global anthropogenic biodiversity loss. –Science Advance 45: eabm9982.
Jin, X., Y. Liu, W. Hu, G. Wang, Z. Kong, L. Wu & G. Ge (2019): Soil bacterial and fungal communities and the associated nutrient cycling responses to forest conversion after selective logging in a subtropical forest of China. – Forest Ecology and Management 444: 308–317.
Jones, D. T., F. X. Susilo, D. E. Bignell, S. Hardiwinoto, A. N. Gillison & P. Eggleton, (2003): Termite assemblage collapse along a land‐use intensification gradient in lowland central Sumatra, Indonesia. – Journal of Applied Ecology 40: 380–391.
Kalif, K. A. B., C. Azevedo-Ramos, P. Moutinho & S. A. O. Malcher (2001): The effect of logging on the ground-foraging ant community in Eastern Amazonia. – Studies on Neotropical Fauna and Environment 36: 215–219.
Keller, M., M. Palace, G. P. Asner, R. Pereira & J. N. M. Silva (2004): Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. – Global Change Biology 10: 784–795.
Kerfahi, D., B. M. Tripathi, J. Lee, D. P. Edwards & J. M. Adams (2014): The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo. – PLoS ONE 9: e11525.
Latty, E. F., S. M. Werner, D. J. Mladenoff, K. F. Raffa & T. A. Sickley (2006): Response of ground beetle (Carabidae) assemblages to logging history in northern hardwood-hemlock forests. – Forest Ecology and Management 222: 335–347.
Li, S., X. Huang, X. Lang, F. Xu, H. Li, M. Zheng & J. Su (2020): Effect of selective logging on soil microbial communities in a Pinus yunnanensis forest. – Land Degradation & Development 31: 2268–2280.
Lindo, Z. & S. Visser (2003): Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. – Canadian Journal of Forest Resarch 33: 1610–1620.
Liu, W. H., D. M. Bryant, L. R. Hutyra, S. R. Saleska, E. Hammond-Pyle, D. Curran & S. C. Wofsy (2006): Woody debris contribution to the carbon budget of selectively logged and maturing mid-latitude forests. – Oecologia 148: 108–117.
Lövei, G. L. & K. D. Sunderland (1996): Ecology and behavior of ground beetles (Coleoptera: Carabidae). – Annual review of entomology 41: 231–256.
McCary, M. A. & O. J. Schmitz (2021): Invertebrate functional traits and terrestrial nutrient cycling: Insights from a global meta‐analysis. – Journal of Animal Ecology 90: 1714–1726.
Martínez-Falcón, A. P., C. E. Moreno & N. P. Pavón (2015): Comunidades de fauna y descomposición de la hojarasca en un bosque de pino-encino con tala selectiva y un bosque sin manejo en México. – Bosque 36: 81–94.
Masís, A. & R. J. Marquis (2009): Effects of even-aged and uneven-aged timber management on dung beetle community attributes in a Missouri Ozark forest. – Forest Ecology and Management 31: 536–545.
Matos, P.S., P. A. B. Barreto-Garcia & R. N. Scoriza (2019): Effect of different forest management practices on the soil macrofauna in the arboreal Caatinga. – Revista Caatinga 32: 741–750.
Martinez-Pastur, G., M. V. Lencinas, J. M. Cellini, P. L. Peri & R. S. Esteban (2009): Timber management with variable retention in Nothofagus pumilio forests of Southern Patagonia. – Forest Ecology and Management 258: 436–443.
Miranda, P.N., F. B. Baccaro, E. F. Morato, M. A. Oliveira & J. H. C. Delabie (2017): Limited effects of low-intensity forest management on ant assemblages in southwestern Amazonian forests. – Biodiversity Conservation 26: 2435–2451.
Moore, J-D., R. Quimet, D. Houle, C. Camiré (2004): Effects of two silvicultural practices on ground beetles (Coleoptera: Carabidae) in a northern hardwood forest, Quebec, Canada. – Canadian Journal of Forest Research 34: 959–968.
Negrete-Yankelevich, S., C. Fragoso, A. C. Newton & O. W. Heal (2007): Successional changes in soil, litter and macroinvertebrate parameters following selective logging in a Mexican Cloud Forest. – Applied Soil Ecology 35: 340–355.
Nichols, E., S. Spector, J. Louzada, T. Larsen, S. Amezquita & M. E. Favila (2008): Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. – Biology Conservation 141: 1461–1474.
Oliver, I., R. Mac Nally & A. York (2000): Identifying performance indicators of the effects of forest management on ground-active arthropod biodiversity using hierarchical partitioning and partial canonical correspondence analysis. – Forest Ecology and Management 139: 21–40.
Orgiazzi, A., R. D. Bardgett, E. Barrios, V. Behan-Pelletier, M. J. I. Briones, J. L. Chotte, G. B. De Deyn, P. Eggleton, N. Fierer, T. Fraser, T. & et al. (2016): Global soil biodiversity atlas. European Commission, Publications Office of the European Union: Luxembourg: p. 176.
Osawa, N., A. Terai, K. Hirata, A. Nakanishi, A. Makino, S. Sakai & S. Sibata (2005): Logging impacts on forest carabid assemblages in Japan. – Canadian Journal Forest Research 35: 2698–2708.
Panichini, M., R. Neculman, R. Godoy, N. Arancibia-Miranda & F. Matus (2017): Understanding carbon storage in volcanic soils under selectively logged temperate rainforests. – Geoderma 302: 76–88.
Pereira, J. E. S., P. A. B. Barreto-Garcia, R. N. Scoriza, O. J. Saggin Júnior & V. S. Gomes (2018): Arbuscular mycorrhizal fungi in soils of arboreal Caatinga submitted to forest management. – Agraria 13: 1–6.
Pérez, C. A., M. R. Carmona, J. M. Fariña & J. J. Armesto (2009): Selective logging of lowland evergreen rainforests in Chiloé Island, Chile: Effects of changing tree species composition on soil nitrogen transformations. – Forest Ecology and Management 258: 1660–1668.
Pérez-López, R. I., M. González-Espinosa, N. Ramírez-Marcial, J. Pérez-Moreno & T. Toledo-Aceves (2021): Forest management effects on the ectomycorrhizal macromycete community in tropical montane forests in Mexico. – Forest Ecology and Management 501: 119670.
Policelli, N., T. R. Horton, A. T. Hudon, T. R. Patterson & J.M. Bhatnagar (2020): Back to roots: The role of ectomycorrhizal fungi in boreal and temperate forest restoration. – Frontiers in Forests and Global Change 3: 97.
Potapov, A. M., F. Beaulieu, K. Birkhofer, S. L. Bluhm, M. I. Degtyarev, M. Devetter, A. A. Goncharov, K. B. Gongalsky, B. Klarner, D. I. Korobushkin & et al. (2022a): Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. – Biological Review 97: 1057–1117.
Potapov, A. M., X. Sun, A. D. Barnes, M. J. Briones, G. Brown, E. K. Cameron, C.-H. Chang, J. Cortet, N. Eisenhauer, A. L. C Franco & et al. (2022b): Global monitoring of soil animal communities using a common methodology. – Soil Organisms 94: 55–68.
Powell, J. R. & M. C. Rillig (2018): Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. – New Phytologist 220: 1059–1075.
Purahong, W., D. Kapturska, M. J. Pecyna, K. Jariyavidyanont, J. Kaunzner, K. Juncheed, T. Uengwetwanit, R. Rudloff, E. Schulz, E., M. Hofrichter & et al. (2015): Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation. – Microbial Ecology 69: 905–913.
Putz, F. E., P. Sist, T. Fredericksen & D. Dykstra (2008): Reduced-impact logging: challenges and opportunities. –Forest Ecology and Management 256: 1427–1433.
Prescott, C. E., & S. J. Grayston (2023): TAMM review: Continuous root forestry—Living roots sustain the belowground ecosystem and soil carbon in managed forests. – Forest Ecology and Management 532: 120848.
Rainio, J. & J. Niemela (2003): Ground beetles (Coleoptera: Carabidae) as bioindicators. – Biodiversity Conservation 2: 487–506.
Rosenvald, R. & A. Lõhmus (2008): For what, when, and where is green-tree retention better than clear-cutting? A review of the biodiversity aspects. – Forest Ecology and Management 255: 1–15.
Ross, S. R. P. J., F. H. Garcia, G. Fischer & M. K. Peters (2018): Selective logging intensity in an East African rain forest predicts reductions in ant diversity. – Biotropica 50: 768–778.
Rozak, A. H., E. Rutishauser, K. Raulund-Rasmussen & P. Sist (2018): The imprint of logging on tropical forest carbon stocks: A Bornean case-study. – Forest Ecology and Management 417: 154–166.
Schappe, T., F. E. Albornoz, B. L. Turner, A. Neat, R. Condit & F. A. Jones (2017): The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. – Journal of Ecology 105: 569–579.
Scheffler, P. Y. (2005): Dung beetle (Coleoptera: Scarabaeidae) diversity and community structure across three disturbance regimes in eastern Amazonia. – Journal Tropical Ecology 21: 9–19.
Schleuning, M., N. Farwig, M. K. Peters, T. Bergsdorf, B. Bleher, R. Brandl, H. Dalitz, G. Fischer, W. Freund, M. W. Gikungu & et al. (2011): Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. – PloS one 6: 1–12.
Schotler, M., P. Nannipieri, S. J. Sørensen & J. D. van Elsas (2018): Microbial indicators for soil quality. – Biology and Fertility of Soils 54: 1–10.
Slade, E. M., D. J. Mann & O. T. Lewis (2011).: Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. – Biology Conservation 144: 166–174.
Song, P., H. Ren, Q. Jia, J. Guo, N. Zhang & K. Ma (2015): Effects of historical logging on soil microbial communities in a subtropical forest in southern China. – Plant and Soil 397: 115–126.
Sterkenburg, E., K. E. Clemmensen, B. D. Lindahl & A. Dahlberg (2019): The significance of retention trees for survival of ectomycorrhizal fungi in clear-cut Scots pine forests. – Journal of Applied Ecology 56: 1367–1378.
Tomao, A., J. A. Bonet, C. Castaño & S. de-Miguel (2020): How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. – Forest Ecology and Management 457: 117678.
Tripathi, B. M., D. P. Edwards, L. W. Mendes, M. Kim, K. Dong, H. Kim & J. M. Adams (2016): The impact of tropical forest logging and oil palm agriculture on the soil microbiome. – Molecular Ecology 25: 2244–2257.
Vandewalle, M., F. De Bello, M. P. Berg, T. Bolger, S. Dolédec, F. Dubs et al. (2010): Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. – Biodiversity and Conservation 19: 2921–2947.
Varenius, K., O. Kårén, B. Lindahl & A. Dahlberg (2016): Long-term effects of tree harvesting on ectomycorrhizal fungal communities in boreal Scots pine forests. – Forest Ecology and Management 380: 41–49.
Vasconcelos, H. L., J. M. S. Vilhena & G. J. A. Caliri (2000): Responses of ants to selective logging of a central Amazonian forest. – Journal of Applied Ecology 37: 508–514.
Veldkamp, E., M. Schmidt, J. S. Powers & M. D. Corre (2020): Deforestation and reforestation impacts on soils in the tropics. – Nature Reviews Earth & Environment 1: 590–605.
Wardle, D. A., K. I. Bonner & G. M. Barker (2002): Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. – Functional Ecology 16: 585–595.
Watson, J. E. M., D. F. Shanahan, M. Di Marco, J. Allan, W. F. Laurance, E. W. Sanderson, B. Mackey & O. Venter (2016): Catastrophic declines in wilderness areas undermine global environment targets. – Current Biology 26: 2929–2934.
Wenger, A., S. Atikinson, T. Santini, K. Falinsky, N. Hutley, S. Albert, N. Horning, J. E. M. Watson, P. J. Mumby & S. D. Jupiter (2018): Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands. – Environmental Research Letters 13: 0474035.
Woodcock, P., D. P. Edwards, T. M. Fayle, R. J. Newton, C. V. Khen, S. H. Bottrell & K. C. Hamer (2011): The conservation value of South East Asia’s highly degraded forests: evidence from leaf-litter ants. – Philosophical Transactions of the Royal Society B: Biological Sciences 366: 3256–3264.
Yamada, T., M. Niino, S. Yoshida, T. Hosaka & T. Okuda (2014): Impacts of Logging Road Networks on Dung Beetles and Small Mammals in a Malaysian Production Forest: Implications for Biodiversity Safeguards. – Land 3: 639–657.
Yeong, K. L., G. Reynolds & J. K. Hill (2016): Leaf litter decomposition rates in degraded and fragmented tropical rain forests of Borneo. – Biotropica 48: 443–452.
Yu, X.-D., C. L. Liu, L. Lü, S. L. Bearer, T. H. Luo & H. Z. Zhou (2017): Does selective logging change ground-dwelling beetle assemblages in a subtropical broad-leafed forest of China? – Insect Science 24: 303–313.
Zhu, X., W. Zhang, H. Chen & J. Mo (2015): Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems: A review. – Acta Ecologica Sinica 35: 35–43.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 SOIL ORGANISMSSoil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.