Soil biodiversity promotes key ecosystem functions by its complex structure and interactions – state and perspectives
– This paper is part of the special collection ‘Faktencheck Artenvielfalt’
DOI:
https://doi.org/10.25674/450Keywords:
soil microorganisms, soil fauna, diversity, decomposition, mineralization, soil aggregation, greenhouse gases, functional traits, multifunctionality, multitrophic interactionsAbstract
The biodiversity of soil microorganisms and fauna supports many ecosystem functions in terrestrial ecosystems, such as decomposition, aggregation of soil organic matter or mobilization and recycling of nutrients. These processes are linked to the functional traits (e.g. life strategy, body size, metabolic capabilities) as well as frequently occurring mutualistic interactions (e.g. mycorrhiza symbiosis) of soil organisms. The high vertical and horizontal diversity of soil food webs maintains and stabilises ecosystem functions. As part of the German Biodiversity Assessment (‘Faktencheck Artenvielfalt’), a group of experts summarized the available knowledge on the state and role of soil biodiversity in Germany. Here, we highlight the role of biodiversity in soils as a driver of ecosystem multifunctionality and buffer against perturbation by human activities, e.g. by mediating the storage and release of greenhouse gases. Through their outstanding contribution to decomposition of dead organic matter, soil organisms control the carbon balance of terrestrial ecosystems, and thus can contribute to climate protection. We further discuss the multifunctionality of soil organisms as a basis for stable ecosystem functioning. Taken together, soil biodiversity, through its emerging properties, is as a key player in processes that govern terrestrial systems, and as such needs to find more consideration in ecosystem sustainability and restoration.
Downloads
References
Allsup, C. M., George, I., Lankau, R. A. (2023). Shifting microbial communities can enhance tree tolerance to changing climates, Science 380 (6647), 835-840. https://doi.org/10.1126/science.adf2027
Angst, G., Frouz, J., van Groenigen, J. W., Scheu, S., Kögel-Knabner, I., & Eisenhauer, N. (2022). Earthworms as catalysts in the formation and stabilization of soil microbial necromass. Global Change Biology, 28(16), 4775–4782. https://doi.org/10.1111/gcb.16208
Angst, G., Potapov, A., Joly, F.-X., Angst, Š., Frouz, J., Ganault, P., & Eisenhauer, N. (2024). Conceptualizing soil fauna effects on labile and stabilized soil organic matter. Nature Communications, 15(1), 5005. https://doi.org/10.1038/s41467-024-49240-x
Asad, N.I., Tremblay, J., Dozois, J., Mukula, E., L’Espérance, E., Constant, P., & Yergeau, E. (2022). Predictive microbial-based modelling of wheat yields and grain baking quality across a 500 km transect in Québec. FEMS Microbiology Ecology 11, 97(12,: fiab160. doi: 10.1093/femsec/fiab160.
Banerjee, S., & van der Heijden, M. G. A. (2022). Soil microbiomes and one health. Nature Reviews Microbiology, 21, 6–20. https://doi.org/10.1038/s41579-022-00779-w
Barnes, A. D., Jochum, M., Lefcheck, J. S., Eisenhauer, N., Scherber, C., O’Connor, M. I., de Ruiter, P., & Brose, U. (2018). Energy Flux: The Link between Multitrophic Biodiversity and Ecosystem Functioning. Trends in Ecology & Evolution, 33(3), 186–197. https://doi.org/10.1016/j.tree.2017.12.007
Beltran-Garcia, M. J., Martínez-Rodríguez, A., Olmos-Arriaga, I., Valdes-Salas, B., Di Mascio, P., & White, J. F. (2021). Nitrogen fertilization and stress factors drive shifts in microbial diversity in soils and plants. Symbiosis, 84(3), 379–390. https://doi.org/10.1007/s13199-021-00787-z
Bender, S. F., Wagg, C., & van der Heijden, M. G. A. (2016). An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends in Ecology & Evolution, 31(6), 440–452. https://doi.org/10.1016/j.tree.2016.02.016
Blume, H.-P., Brümmer, G. W., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., & Wilke, B.-M. (2010). Scheffer/schachtschabel: Lehrbuch der Bodenkunde.
Bonfanti, J., Potapov, A. M., Angst, G., Ganault, P., Briones, M. J. I., Calderón-Sanou, I., Chen, T.-W., Conti, E., Degrune, F., Eisenhauer, N., Ferlian, O., Hackenberger, D., Hauer, A., Hedde, M., Hohberg, K., Krogh, P. H., Mulder, C., Perez-Roig, C., Russell, D., … Berg, M. P. (2024). Linking effect traits of soil fauna to processes of organic matter transformation. Functional Ecology, 00, 1-16. https://doi.org/10.1111/1365-2435.14720
Bonkowski, M., Villenave, C., & Griffiths, B. (2009). Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321, 213-233. https://doi.org/10.1007/s11104-009-0013-2
Brundrett, M. C., & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220(4), 1108–1115. https://doi.org/ 10.1111/nph.14976
Buse, T., Ruess, L., & J. Filser (2014). Collembola gut passage shapes microbial communities in faecal pellets but not viability of dietary algal cells. Chemoecology 24, 79-84.
Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cunha, L. C. D., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., Syampungani, S., Zaehle, S., Zickfeld, K., Alexandrov, G. A., Bala, G., Bopp, L., … Lebehot, A. D. (2021). Global Carbon and other Biogeochemical Cycles and Feedbacks. In IPCC AR6 WGI, Final Government Distribution: (Chapter 5). https://hal.archives-ouvertes.fr/hal-03336145
Chen, X. D., Dunfield, K. E., Fraser, T. D., Wakelin, S. A., Richardson, A. E., Condron, L. M., Chen, X. D., Dunfield, K. E., Fraser, T. D., Wakelin, S. A., Richardson, A. E., & Condron, L. M. (2019). Soil biodiversity and biogeochemical function in managed ecosystems. Soil Research, 58(1), 1–20. https://doi.org/10.1071/SR19067
Chen, Q., Long, C., Chen, J., & Cheng, X. (2021). Differential response of soil CO2, CH4, and N2O emissions to edaphic properties and microbial attributes following afforestation in central China. Global Change Biology, 27(21), 5657–5669. https://doi.org/ 10.1111/gcb.15826
Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M., & Kim, Y. C. (2008). 2R,3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21(8), 1067–1075. https://doi.org/10.1094/MPMI-21-8-1067
Conthe, M., Wittorf, L., Kuenen, J. G., Kleerebezem, R., van Loosdrecht, M. C. M., & Hallin, S. (2018). Life on N2O: Deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture. The ISME Journal, 12(4), Article 4. https://doi.org/10.1038/s41396-018-0063-7
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), Article 6630. https://doi.org/10.1038/387253a0
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., … Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), Article 7631. https://doi.org/10.1038/nature20150
de Gea, A. B., Hautier, Y., & Geisen, S. (2023). Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. Global Change Biology, 29, 296-307. https://doi.org/10.1111/gcb.16471
Dawud, S. M., Raulund-Rasmussen, K., Ratcliffe, S., Domisch, T., Finér, L., Joly, F.-X., Hättenschwiler, S., & Vesterdal, L. (2017). Tree species functional group is a more important driver of soil properties than tree species diversity across major European forest types. Functional Ecology, 331(5), 1153-1162. https://doi.org/10.1111/1365-2435.12821
Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Trivedi, P., Osanai, Y., Liu, Y.-R., Hamonts, K., Jeffries, T. C., & Singh, B. K. (2016). Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological Monographs, 86(3), 373–390. https://doi.org/10.1002/ecm.1216
Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D. J., Abades, S., Alfaro, F. D., Bastida, F., Berhe, A. A., Cutler, N. A., Gallardo, A., García-Velázquez, L., Hart, S. C., Hayes, P. E., He, J.-Z., Hseu, Z.-Y., Hu, H.-W., Kirchmair, M., Neuhauser, S., Pérez, C. A., … Singh, B. K. (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4(2), Article 2. https://doi.org/10.1038/s41559-019-1084-y
Eisenhauer, N., Hines, J., Maetsre, T., & Rillig, M. C. (2023). Reconsidering functional redundancy in biodiversity research. npj Biodiversity 2, Article 9. https://doi.org/10.1038/s44185-023-00015-5
Escudero-Martinez, C., & Bulgarelli, D. (2023). Engineering the crop microbiota through host genetics. Annual Review of Phytopathology, 6, 257-277. https://doi.org/10.1146/annurev-phyto-021621-121447
European Commission. (2023). Proposal for a directive of the European parliament and of the council on soil monitoring and resilience (Soil Monitoring Law). European Commission.
Ewald, M., Glavatska, O., & Ruess, L. (2020). Effects of resource manipulation on nematode community structure and metabolic footprints in an arable soil across time and depth. Nematology, 22(9), 1025–1043. https://doi.org/10.1163/15685411-bja10009
FAO, ITPS, GSBI, CBD, & EC (2020). State of knowledge of soil biodiversity – Status, challenges and potentialities (Report No. 20; p. 586). FAO.
Ferris, H. (2010). Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46(2), 97–104. https://doi.org/10.1016/ j.ejsobi.2010.01.003
Ferris, H., & Tuomisto, H. (2015). Unearthing the role of biological diversity in soil health. Soil Biology & Biochemistry, 85, 101–109. https://doi.org/10.1016/j.soilbio.2015.02.037
Filser, J., Faber, J. H., Tiunov, A. V., Brussaard, L., Frouz, J., De Deyn, G., Uvarov, A. V., Berg, M. P., Lavelle, P., Loreau, M., Wall, D.H., Querner, P., Eijsackers, H., & Jiménez, J.J. (2016). Soil Fauna: Key to new carbon models. Soil, 2, 565-582. doi:10.5194/soil-2-565-2016
Franz, H. (1974). Die Geschichte der Bodenzoologie und ihre Einbeziehung in die bodenkundliche Forschung. Geoderma, 12(4), 299–309. https://doi.org/10.1016/0016-7061(74)90023-8
Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., … Zeng, J. (2022). Global Carbon Budget 2021. Earth System Science Data, 14(4), 1917–2005. https://doi.org/10.5194/essd-14-1917-2022
Frouz, J., Roubíčková, A., Hedĕnec, P., Tajovský, K. (2015). Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. European Journal of Soil Biology, 68, 18-24. https://doi.org/10.1016/j.ejsobi.2015.03.002
Fonte, S. J., Hsieh, M., & Mueller, N. D. (2023). Earthworms contribute significantly to global food production. Nature Communications, 14, 5713. https://doi.org/10.1038/s41467-023-41286-7
Garcia-Palacios, P., Maestre, F. T., Kattge, J., & Wall, D. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes Ecology Letters, 16, 1045–1053. https://doi: 10.1111/ele.12137.
Gao, Z., Karlson, I., Geisen, S., Kowalhuk, G., & Jousset, A. (2019). Protists: Puppet masters of the rhizosphere microbiome. Trends in Plant Science, 2, 165-176. https://doi.org/10.1016/j.tplants.2018.10.011
Garland, G., Banerjee, S., Edlinger, A., Miranda Oliveira, E., Herzog, C., Wittwer, R., Philippot, L., Maestre, F. T., & van der Heijden, M. G. A. (2021). A closer look at the functions behind ecosystem multifunctionality: A review. Journal of Ecology, 109(2), 600–613. https://doi.org/10.1111/1365-2745.13511
Geisen, S., Wall, D. H., & van der Putten, W. H. (2019). Challenges and Opportunities for Soil Biodiversity in the Anthropocene. Current Biology, 29(19), R1036–R1044. https://doi.org/10.1016/j.cub.2019.08.007
Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., & Hättenschwiler, S. (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25(6), 372–380. https://doi.org/10.1016/j.tree.2010.01.010
Giling, D. P., Beaumelle, L., Phillips, H. R. P., Cesarz, S., Eisenhauer, N., Ferlian, O., Gottschall, F., Guerra, C., Hines, J., Sendek, A., Siebert, J., Thakur, M. P., & Barnes, A. D. (2019). A niche for ecosystem multifunctionality in global change research. Global Change Biology, 25(3), 763–774. https://doi.org/10.1111/gcb.14528
Giller, P. S. (1996). The diversity of soil communities, the ‘poor man’s tropical rainforest.’ Biodiversity & Conservation, 5(2), 135–168. https://doi.org/10.1007/BF00055827
Griffiths, B. S., Ritz, K., Bardgett, R. D., Cook, R., Christensen, S., Ekelund, F., Sørensen, S. J., Bååth, E., Bloem, J., De Ruiter, P. C., Dolfing, J., & Nicolardot, B. (2000). Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity–ecosystem function relationship. Oikos, 90(2), 279–294. https://doi.org/10.1034/j.1600-0706.2000.900208.x
Guerra, C. A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., Beaumelle, L., Rillig, M. C., Maestre, F. T., Delgado-Baquerizo, M., Buscot, F., Overmann, J., Patoine, G., Phillips, H. R. P., Winter, M., Wubet, T., Küsel, K., Bardgett, R. D., Cameron, E. K., … Eisenhauer, N. (2020). Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11(1), Article 1. https://doi.org/10.1038/s41467-020-17688-2
Hassani, M. A., Durán, P., & Hacquard, S. (2018). Microbial interactions within the plant holobiont. Microbiome, 6(1), 58. https://doi.org/10.1186/s40168-018-0445-0
Hättenschwiler, S., Tiunov, A.V. Scheu, S. (2005). Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annual Review of Ecology, Evolution & Systematics, 36, 191-218. https://doi.org/10.1146/annurev.ecolsys.36.112904.151932
Heemsbergen, D. A., Berg, M. P., Loreau, M., van Hal, J. R., Faber, J. H., & Verhoef, H. A. (2004). Biodiversity Effects on Soil Processes Explained by Interspecific Functional Dissimilarity. Science, 306(5698), 1019–1020. https://doi.org/10.1126/science.1101865
Heijboer, A., Ruess, L., Traugott, M., Jousset, A., & De Ruiter, P. C. (2018). Empirical methods of identifying and quantifying trophic interactions for constructing soil food web models. In: J. C. Moore, P. C. De Ruiter, K. S. McCann, & V. Wolters (Eds.), Adaptive Food Webs—Stability and Transitions of Real and Model Ecosystems (pp. 257–285). Cambridge University Press, UK.
Huang, Y. Stein, G., Kolle, O., Kübler, K., Schulze, E.-D., Dong, H., Eichenberg, D., Gleixner, G., Hildebrandt, A., Lange, M., Roscher, C., Schielzeth, H., Schmid, B., Weigelt, A., Weisser, W. W., Shadaydeh, M., Denzler, J., Ebeling, A., & Eisenhauer, N. (2024). Enhanced stability of grassland soil temperature by plant diversity. Nature Geoscience 17, 44-50. https://doi.org/10.1038/s41561-023-01338-5
Jacobs, A., Flessa, H., Don, A., Heidkamp, A., Prietz, R., Dechow, R., Gensior, A., Poeplau, C., Riggers, C., Schneider, F., Tiemeyer, B., Vos, C., Wittnebel, M., Müller, T., Säurich, A., Fahrion-Nitschke, A., Gebbert, S., Hopfstock, R., Jaconi, A., … Freibauer, A. (2018). Landwirtschaftlich genutzte Böden in Deutschland: Ergebnisse der Bodenzustandserhebung (Research Report No. 64). Thünen Report. https://doi.org/10.3220/REP1542818391000
Jochum, M., & Eisenhauer, N. (2022). Out of the dark: Using energy flux to connect above- and belowground communities and ecosystem functioning. European Journal of Soil Science, 73: e13154. https://doi.org/10.1111/ejss.13154
Joly, F.-X., Coq, S., Coulis, M., David, J.-F., Hättenschwiler, S., Mueller, C. W., Prater, I., & Subke, J.-A (2020). Detritivore conversion of litter into faeces accelerates organic matter turnover. Communications Biology 3, Article 660. https://doi.org/10.1038/s42003-020-01392-4
Kaiser, K., Wemheuer, B., Korolkow, V., Wemheuer, F., Nacke, H., Schoening, I., Schrumpf, M., & Daniel, R. (2016). Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports, 6, 33696. https://doi.org/10.1038/srep33696
Koch H., & Sessitsch, A. (2024) The microbial-driven nitrogen cycle and its relevance for plant nutrition. Journal of Experimental Botany 75(18), 5547-5556. doi: 10.1093/jxb/erae274.
Kolb, S. (2009). The quest for atmospheric methane oxidizers in forest soils. Environmental Microbiology Reports, 1(5), 336–346. https://doi.org/10.1111/j.1758-2229.2009.00047.x
Lang, B., & Russell, D. J. (2022). Excretion of nitrogenous waste by soil fauna and assessment of the contribution to soil nitrogen pools. Soil Organisms, 94(2), Article 2. https://doi.org/10.25674/so94iss2id182
Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6(1), Article 1. https://doi.org/10.1038/ncomms7707
Latz, E., Eisenhauer, N., Rall, B. C., Allan, E., Roscher, C., Scheu, S., & Jousset, A. (2012). Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. Journal of Ecology, 100(3), 597–604. https://doi.org/10.1111/ j.1365-2745.2011.01940.x
Leimer, S., Oelmann, Y., Eisenhauer, N., Milcu, A., Roscher, C., Scheu, S., Weigelt, A., Wirth, C., & Wilcke, W. (2016). Mechanisms behind plant diversity effects on inorganic and organic N leaching from temperate grassland. Biogeochemistry, 131(3), 339–353. https://doi.org/10.1007/s10533-016-0283-8
Lewin, S., Wende, S., Wehrhan, W., Verch, G., Ganugi, P., Sommer, M., Kolb, S., (2024). Cereals rhizosphere microbiome undergoes host selection of nitrogen cycle guilds correlated to crop productivity. Science of The Total Environment, 911, 168794. https://doi.org/10.1016/j.scitotenv.2023.168794
Lund, M. B., Kjeldsen, K., Schramm, A. (2014). The earthworm—Verminephrobacter symbiosis: an emerging experimental system to study extracellular symbiosis. Frontiers Microbiology 5, 128. https://doi.org/10.3389/fmicb.2014.00128
Mathivanan, G. P., Eysoldt, M., Zinnbauer, M., Rösemann, C., & Fuß, R. (2021). New N2O emission factors for crop residues and fertiliser inputs to agricultural soils in Germany. Agriculture, Ecosystems & Environment, 322, 107640. https://doi.org/ 10.1016/ j.agee.2021.107640
Montagna, M., Berruti, A., Bianciotto, V., Cremonesi, P., Giannico, R., Gusmeroli, F., Lumini, E., Pierce, S., Pizzi, F., Turri, F., & Gandini, G. (2018). Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient. Molecular Ecology, 27(18), 3671–3685. https://doi.org/10.1111/mec.14817
Morrien, E., Hannula S.E., Snoek, L. B., Helmsing, N. R., Zweers, H., Hollander, M., Soto, R.J., Bouffaud, M.-L., Buée M., Dimmers, W., Duyts, H., Geisen, S……van der Putten W. (2017). Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349. https://doi/10.1038/ ncomms14349 |
Motiejūnaitė, J., Børja, I., Ostonen, I., Bakker, M. R., Bjarnadottir, B., Brunner, I., Iršėnaitė, R., Mrak, T., Oddsdóttir, E. S., & Lehto, T. (2019). Cultural ecosystem services provided by the biodiversity of forest soils: A European review. Geoderma, 343, 19–30. https://doi.org/10.1016/j.geoderma.2019.02.025
Mulder, C., & Maas, R. (2017). Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes. BMC Ecology, 17(1), 36. https://doi.org/10.1186/s12898-017-0145-9
Nielsen, U. N., Ayres, E., Wall, D. H., & Bardgett, R. D. (2011). Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity–function relationships. European Journal of Soil Science, 62(1), 105–116. https://doi.org/10.1111/j.1365-2389.2010.01314.x
Nieminen, J. K., & Setälä, H. (1997): Enclosing decomposer food web: implications for community structure and function. Biology & Fertility of Soils, 26, 50-57.
Paul, E. A. (2014). Soil microbiology, ecology and biochemistry. Academic press.
Pausch, J. Kramer, S., Scharroba, A., Scheunemann, N., Butenschoen, O., Kandeler, E., Marhan, S., Riederer, M., Scheu, S., Kuzyakov, Y., Ruess, L. (2016). Small but active – pool size does not matter for carbon incorporation in belowground food webs. Functional Ecology 30, 479-489.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Roberston, G. P., & Smith P. (2016). Climate-smart soils. Nature, 532, 49-57. doi:10.1038/nature17174
Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11(11), Article 11. https://doi.org/10.1038/nrmicro3109
Potapov, A.M., Brose, U., Scheu, S., & Tiunov, A.V. (2019). Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. The American Naturalist, 194, 823–839. https://doi.org/10.1086/705811
Potapov, A. M. (2022). Multifunctionality of belowground food webs: Resource, size and spatial energy channels. Biological Reviews, 97(4), 1691–1711. https://doi.org/10.1111/brv.12857
Potapov, A. M., Beaulieu, F., Birkhofer, K., Bluhm, S. L., Degtyarev, M. I., Devetter, M., Goncharov, A. A., Gongalsky, K. B., Klarner, B., Korobushkin, D. I., Liebke, D. F., Maraun, M., Mc Donnell, R. J., Pollierer, M. M., Schaefer, I., Shrubovych, J., Semenyuk, I. I., Sendra, A., Tuma, J., … Scheu, S. (2022). Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biological Reviews, 97(3), 1057–1117. https://doi.org/10.1111/brv.12832
Potapov, A.M., Drescher, J., Darras,K., Wenzel, A., Janotta, N., Kasmiatun, R.N., Laurent, V., Mawan, A., Utari, E.U., Pollierer, M. M., Rembold, K., Widyastuti, R., Buchori, D., Hidayat, P., Turner, E., Grass, I., Westphal, C., Tscharntke, T., & Scheu, S. (2024). Rainforest transformation reallocates energy from green to brown food webs. Nature, 627, 116-122. https://doi.org/10.1038/s41586-024-07083-y
Purahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M. J., Kapturska, D., Hofrichter, M., Krüger, D., & Buscot, F. (2016). Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology, 25(16), 4059–4074. https://doi.org/10.1111/mec.13739
Richter, A., Schöning, I., Kahl, T., Bauhus, J., & Ruess, L. (2018). Regional environmental conditions shape microbial community structure stronger than local forest management intensity. Forest Ecology & Management, 409, 250–259. https://doi.org/10.1016/ j.foreco.2017.11.027
Ristok, C., Weinhold, A., Ciobanu, M., Poeschl, Y., Roscher, C., Vergara, F., Eisenhauer, N., & van Dam, N. M. (2023). Plant diversity effects on herbivory are related to soil biodiversity and plant chemistry. Journal of Ecology, 111(2), 412–427. https://doi.org/10.1111/1365-2745.14032
Ruess, L. (2024). Nematodes and their trophic interactions in the soil microbiome. In: Understanding and utilizing soil microbiomes for a more sustainable agriculture. K.E. Dunfiled (ed.), Burleight & Dodds, Science Publishing, 29 pp. http://dx.doi.org/10.19103/AS.2024.0136.30
Samaddar, S., Karp, D. S., Schmidt, R., Devarajan, N., McGarvey, J. A., Pires, A. F. A., & Scow, K. (2021). Role of soil in the regulation of human and plant pathogens: Soils’ contributions to people. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834), 20200179. https://doi.org/10.1098/rstb.2020.0179
Scharroba, A., Dibbern, D., Hünninghaus, M., Kramer, S., Moll, S., Butenschoen, O., Bonkowski, M., Buscot, F., Kandeler, E., Koller, R., Krüger, D., Lueders, T., Scheu, S., Ruess, L. (2012). Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biology & Biochemistry 50, 111-119.
Scheu, S, (2002). The soil food web: structure and perspectives. European Journal of Soil Biology, 38, 11-20.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), Article 7367. https://doi.org/10.1038/nature10386
Smith, L. C., Orgiazzi, A., Eisenhauer, N., Cesarz, S., Lochner, A., Jones, A., Bastida, F., Patoine, G., Reitz, T., Buscot, F., Rillig, M. C., Heintz-Buschart, A., Lehmann, A., & Guerra, C. A. (2021). Large-scale drivers of relationships between soil microbial properties and organic carbon across Europe. Global Ecology and Biogeography, 30(10), 2070–2083. https://doi.org/10.1111/geb.13371
Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M. M., Renner, S. C., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, F., Diekötter, T., Heinze, J., … Allan, E. (2016). Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536(7617), Article 7617. https://doi.org/10.1038/nature19092
Täumer, J., Kolb, S., Boeddinghaus, R. S., Wang, H., Schöning, I., Schrumpf, M., Urich, T., & Marhan, S. (2021). Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Global Change Biology, 27(4), 929–940. https://doi.org/10.1111/gcb.15430
Täumer, J., Marhan, S., Groß, V., Jensen, C., Kuss, A. W., Kolb, S., & Urich, T. (2022). Linking transcriptional dynamics of CH4-cycling grassland soil microbiomes to seasonal gas fluxes. The ISME Journal, 16(7), Article 7. https://doi.org/10.1038/s41396-022-01229-4
Taylor, B. N., Simms, E. L., & Komatsu, K. J. (2020). More Than a Functional Group: Diversity within the Legume–Rhizobia Mutualism and Its Relationship with Ecosystem Function. Diversity, 12(2), Article 2. https://doi.org/10.3390/d12020050
Thimm, T., Hoffmann, A., Borkott, H., Munch, J.C., Tebbe, C.C. (1998). The gut of the soil microarthropod Folsomia candida(Collembola) is a frequently changeable but selective habitat and a vector for microorganisms. Applied and Environmental Microbiology, 64, 7. https://doi.org/10.1128/AEM.64.7.2660-2669.1998
Tilman, D. (2001). Functional Diversity. In: S. A. Levin (Ed.), Encyclopedia of Biodiversity (Second Edition) (pp. 587–596). Academic Press. https://doi.org/10.1016/B978-0-12-384719-5.00061-7
van Bommel, M., Arndt, K., Endress, M-G., Dehghani, F., Wirsching, J., Blagodatskaya, E., Blagodatsky, S., Kandeler, E., Marhan, S., Poll, C., & L. Ruess (2024). Under the lens: Carbon and energy channels in the soil micro-food web. Soil Biology and Biochemistry 199, 109575. https://doi.org/10.1016/j.soilbio.2024.109575
van Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen, A., Pendall, E., Reich, P. B., Schuur, E. A. G., & Hungate, B. A. (2018). Predicting soil carbon loss with warming. Nature, 554(7693), Article 7693. https://doi.org/10.1038/nature25745
Vaidya, S., Hoffmann, M., Dubbert, M., Kramp, K., Schmidt, M., Verch, G., Sommer, M., & Augustin, J. (2024). Topsoil dilution by subsoil admixture had less impact on soil organic carbon stock development than fertilizer form and erosion state. Science of the Total Environment, 10, 946: 174243. doi: 10.1016/j.scitotenv.2024.174243
Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 111(14), 5266–5270. https://doi.org/10.1073/ pnas.1320054111
Wagg, C., Hautier, Y., Pellkofer, S., Banerjee, S., Schmid, B., Marcel GA van der Heijden, M.G.A. (2021). Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. eLife, 10: e62813. https://doi.org/10.7554/eLife.62813
Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. Nature, 528, Article 7580. https://doi.org/10.1038/nature15744
Wan, B., Hu, Z., Liu, T., Yang, Q., Li, D., Zhang, C., Chen, X., Hu, F., Kardol, P., Griffiths, B. S., & Liu, M. (2022b). Organic amendments increase the flow uniformity of energy across nematode food webs. Soil Biology and Biochemistry, 170. https://doi.org/10.1016/j.soilbio.2022.108695
Wan, B., Liu, T., Gong, X., Zhang, Y., Li, C., Chen, X., Hu, F., Griffiths, B. S., & Liu, M. (2022). Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs. Soil Biology and Biochemistry, 169. https://doi.org/10.1016/j.soilbio.2022.108656
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Putten, W. H. van der, & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629–1633. https://doi.org/10.1126/science.1094875
Whalen, J. K., Kernecker, M. L., Thomas, B. W., Sachdeva, V., & Ngosong, C. (2013). Soil food web controls on nitrogen mineralization are influences by agricultural practices in humid temperate climates. CAB Reviews, 8, 023. https://doi.org/ 10.1079/PAVSNNR20138023
White, H. J., León-Sánchez, L., Burton, V. J., Cameron, E. K., Caruso, T., Cunha, L., Dirilgen, T., Jurburg, S. D., Kelly, R., Kumaresan, D., Ochoa-Hueso, R., Ordonez, A., Phillips, H. R. P., Prieto, I., Schmidt, O., & Caplat, P. (2020). Methods and approaches to advance soil macroecology. Global Ecology & Biogeography, 29(10), 1674–1690. https://doi.org/10.1111/geb.13156
Yu, L., Zhang, Q., Tian, Y., Scheer, C., Li, T.,& Zhang, W. (2022). Global variations and drivers of nitrous oxide emissions from forests and grasslands. Frontiers in Soil Science 2, 1094177. https://doi.org/10.3389/fsoil.2022.1094177
Yue, H., Banerjee, S., Liu, C., Ren, Q., Zhang, W., Zhang, B., Tian, X., Wei, G., & Shu, D., (2022). Fertilizing-induced changes in the nitrifying microbiota associated with soil nitrification and crop yield. Science of the Total Environment, 841, 156752. https://doi.org/10.1016/j.scitotenv.2022.156752.
Zheng, H., Gao, D., Zhou, Y., & Zhao, J. (2023). Energy flow across soil food webs of different ecosystems: Food webs with complex structures support higher energy flux. Geoderma, 439, 116666. https://doi.org/10.1016/j.geoderma.2023.116666
Zhu, X., Jackson, R. D., DeLucia, E. H., Tiedje, J. M., & Liang, C. (2020). The soil microbial carbon pump: From conceptual insights to empirical assessments. Global Change Biology, 26(11), 6032–6039. https://doi.org/10.1111/gcb.15319
Zhu, B., Wan, B., Liu, T., Zhang, C., Cheng, L., Cheng, Y., Tian, S., Chen, X., Hu, F., Whalen, J. K., & Liu, M. (2023). Biochar enhances multifunctionality by increasing the uniformity of energy flow through a soil nematode food web. Soil Biology and Biochemistry, 183, 109056. https://doi.org/10.1016/J.SOILBIO.2023.109056
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Liliane Ruess, Steffen Kolb, Nico Eisenhauer, Christian Ristok

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.