Imprinted or innate food preferences in the model mite Archegozetes longisetosus (Actinotrichida, Oribatida, Trhypochthoniidae)

Short communication

Authors

  • Adrian Brückner Ecological Networks, Technische Univeristät Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
  • Romina Schuster Ecological Networks, Technische Univeristät Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
  • Timo Smit Ecological Networks, Technische Univeristät Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany
  • Michael Heethoff Ecological Networks, Technische Univeristät Darmstadt, Schnittspahnstraße 3, 64287 Darmstadt, Germany

Keywords:

Behavioral ecology, soil fauna, choosy generalist

Abstract

Most oribatid mites are opportunistic feeders with a broad variety of different food sources. However, preferences for certain food such as dark pigmented fungi, led to the ‘choosy generalist’-hypothesis. The mechanisms behind this idea and whether oribatid mites have an innate or learned preference for food are unknown. We used Archegozetes longisetosus Aoki to test whether mites prefer unknown high quality food or food they have experienced before. We found that A. longisetosus did not prefer known food, and that food preferences were innate and not due to imprinting/learning behavior.

 

Downloads

Download data is not yet available.

References

Agrawal, A. A., F. Vala & M. W. Sabelis (2002): Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite: adaptive plasticity? – American Naturalist 159: 553–565.

Anderson, J. M. (1975): Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. – Journal of Animal Ecology 44: 475–495.

Bates, D., M. Maechler, B. Bolker & S. Walker (2015): Fitting linear mixed-effects models using lme4. – Journal of Statistical Software 67: 1–48.

Behan-Pelletier, V. M. & S. B. Hill (1983): Feeding-habits of sixteen species of Oribatei (Acari) from an acid peat bog, Glenamoy, Ireland. – Revue D’écologie et de Biologie du Sol 20: 221–267.

Benjamini, Y. & Y. Hochberg (1995): Controlling the false discovery rate - a practical and powerful approach to multiple testing. – Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.

Brückner, A., A. Hilpert & M. Heethoff (2017): Biomarker function and nutritional stoichiometry of neutral lipid fatty acids and amino acids in oribatid mites. – Soil Biology & Biochemistry 115: 35–43.

Brückner, A., R. Schuster, T. Smit, M. M. Pollierer, I. Schäffler & M. Heethoff (2018a): Track the snack – Olfactory cues shape foraging behaviour of decomposing soil mites (Oribatida). – Pedobiologia 66: 74–80.

Brückner, A., R. Schuster, K. Wehner & M. Heethoff (2018b) Adding to the reproductive biology of Archegozetes longisetosus (Actinotrichida, Oribatida, Trhypochthoniidae) again: the role of nutritional quality. – Soil Organisms 90(1): 1–12.

Egas, M. & M. W. Sabelis (2001): Adaptive learning of host preference in a herbivorous arthropod. – Ecology Letters 4: 190–195.

Egas, M., D. J. Norde & M. W. Sabelis (2003): Adaptive learning in arthropods: spider mites learn to distinguish food quality. – Experimental & Applied Acarology 30: 233–247.

Egas, M., U. Dieckmann & M. W. Sabelis (2004): Evolution restricts the coexistence of specialists and generalists: the role of trade-off structure. – American Naturalist 163: 518–531.

Farley, R. A. & A. H. Fitter (1999): The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. – Journal of Ecology 87: 849–859.

Fox, J. & S. Weisberg (2011): Companion to applied regression, Second Edition. – Thousand Oaks CA: Sage [http://socserv.socsci.mcmaster.ca/jfox/Books/Companion].

Hassall, M., S. Visser & D. Parkinson (1986): Vertical migration of Onychiurus subtenuis (Collembola) in relation to rainfall and microbial activity. – Pedobiologia 29: 175–182.

Heethoff, M. & S. Scheu (2016): Reliability of isotopic fractionation (Δ15N, Δ13C) for the delimitation of trophic levels of oribatid mites: Diet strongly affects Δ13C but not Δ15N. – Soil Biology & Biochemistry 101: 124–129.

Heethoff, M., P. Bergmann, M. Laumann & R. A. Norton (2013): The 20th anniversary of a model mite: A review of current knowledge about Archegozetes longisetosus (Acari, Oribatida). – Acarologia 53: 353–368.

Heethoff, M., M. Laumann & P. Bergmann (2007): Adding to the reproductive biology of the parthenogenetic oribatid mite, Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae). – Turkish Journal of Zoology 31: 151–159.

Hodge, A. (2006): Plastic plants and patchy soils. – Journal of Experimental Botany 57: 401–411.

Hubert, J. & A. Lukesova (2001): Feeding of the panphytophagous oribatid mite Scheloribates laevigatus (Acari: Oribatida) on cyanobacterial and algal diets in laboratory experiments. – Applied Soil Ecology 16: 77–83.

Hubert, J., M. Zilova & S. Pekar (2001): Feeding preferences and gut contents of three panphytophagous oribatid mites (Acari: Oribatida). – European Journal of Soil Biology 37: 197–208.

Koukol, O., J. Mourek, Z. Janovsky & K. Cerna (2009): Do oribatid mites (Acari: Oribatida) show a higher preference for ubiquitous vs. specialized saprotrophic fungi from pine litter? – Soil Biology & Biochemistry 41: 1124–1131.

Labandeira, C. C., T. L. Phillips & R. A. Norton (1997): Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. – Palaios 12: 319–353.

Luxton, M. (1972): Studies on oribatid mites of a Danish beech wood soil .1. Nutritional biology. – Pedobiologia 12: 434–463.

Maraun, M. & S. Scheu (2000): The structure of oribatid mite communities (Acari, Oribatida): Patterns, mechanisms and implications for future research. – Ecography 23: 374–383.

Maraun, M., S. Migge, M. Schaefer & S. Scheu (1998): Selection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests. – Pedobiologia 42: 232–240.

Maraun, M., H. Martens, S. Migge, A. Theenhaus & S. Scheu (2003): Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. – European Journal of Soil Biology 39: 85–95.

Meier, F. A., S. Scherrer & R. Honegger (2002): Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. – Biological Journal of the Linnean Society 76: 259–268.

Pande, Y. D. & P. Berthet (1973): Studies on the food and feeding habits of soil Oribatei in a black pine plantation. – Oecologia, 12: 413–426.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & R. C. Team (2017): nlme: Linear and nonlinear mixed effects models. – R package version 3.1-131 [https://CRAN.R-project.org/package=nlme].

R Core Team (2016): R: A language and environment for statistical computing. R Foundation for Statistical Computing, – Vienna, Austria [http://www.R-project.org].

Riha, G. (1951): Zur Ökologie der Oribatiden in Kalksteinböden. Zoologische Jahrbücher 80: 407–450.

Schausberger, P. & S. Peneder (2017): Non-associative versus associative learning by foraging predatory mites. – BMC Ecology 17: 2.

Schneider, K. & M. Maraun (2005): Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). – Pedobiologia 49: 61–67.

Schneider, K., C. Renker, S. Scheu & M. Maraun (2004): Feeding biology of oribatid mites: a minireview. – Phytophaga 14: 247–256.

Schowalter, T. D. (2016): Insect Ecology: An Ecosystem Approach. – Academic Press, New York.

Schuster, R. (1956): Der Anteil der Oribatiden an den Zersetzungsvorgängen im Boden. – Zeitschrift für Morphologie und Ökologie der Tiere 45: 1–33.

Siepel, H. & E. M. de Ruiter-Dijkman (1993): Feeding guilds of oribatid mites based on their carbohydrase activities. – Soil Biology & Biochemistry 25: 1491–1497.

Sitvarin, M. I., C. Romanchek & A. L. Rypstra (2015): Nonconsumptive predator-prey interactions: sensitivity of the detritivore Sinella curviseta (Collembola: Entomobryidae) to cues of predation risk from the spider Pardosa milvina (Araneae: Lycosidae). – Environmental Entomology 44: 349–355.

Valdecasas, A. G., A. I. Camacho & M. L. Pelaez (2006): Do small animals have a biogeography? – Experimental & Applied Acarology 40: 133–144.

Wehner, K., R. A. Norton, N. Blüthgen & M. Heethoff (2016): Specialization of oribatid mites to forest microhabitats—the enigmatic role of litter. – Ecosphere 7: e01336.

Downloads

Published

2018-04-01

Issue

Section

ARTICLES

How to Cite

Brückner, A., Schuster, R., Smit, T., & Heethoff, M. (2018). Imprinted or innate food preferences in the model mite Archegozetes longisetosus (Actinotrichida, Oribatida, Trhypochthoniidae): Short communication. Soil Organisms, 90(1), 23–26. https://soil-organisms.org/index.php/SO/article/view/70