The nematode fauna from the top soil to the vadose zone in a forested groundwater recharge area
DOI:
https://doi.org/10.25674/so93iss1pp13Keywords:
flooding, depth transect, soil microfauna, species composition, diversity, trophic structureAbstract
Soil nematodes are major microfaunal grazers that drive the turnover of organic matter as they foster the activity of microorganisms. The latter are an essential component for water purification processes. The present study is the first study that investigates the nematode community along an entire depth transect from top soil to the vadose zone at a forested groundwater recharge area, the “Lange Erlen”, which provides drinking water to the city of Basel (Switzerland). Vertical core drills were performed from 0 – 450 cm depth at two locations in the study area. The vertical transect was divided into 30 cm thick soil sections. Nematodes were extracted, counted, identified and divided into five trophic groups (i.e. plant feeders, fungal feeders, bacterial feeders, omnivores, predators). Based on the classification of functional groups the Maturity Index (MI), Plant Parasitic Index (PPI), as well as the Shannon-Weaver Index (H’) were assessed.
A total of 67 taxa were identified comprising 26 nematode families. The nematode population density was low with an average of 6.26 and 0.85 ind./10 g DW soil across depths at the sampling sites HST and VW, respectively. Density decreased strongly with depth, with on average 46% of the total nematode density located in the uppermost soil layer (0 – 30 cm). Although soil samples were taken down to a depth of 450 cm, no nematodes were found below 240 cm, except for Cephalobus persegnis Bastian, 1865, which was the only species present in the lower vadose zone (220 – 450 cm). Plant feeders were the dominant trophic group (65%) throughout the entire depth transect. Decomposition was mainly mediated by the bacterial carbon and energy channel as indicated by the low number of fungal feeders. The general low MI, PPI and H’ were neither depth nor site dependent, suggesting similar environmental conditions at the two investigated locations due to frequent flooding. SIMPER analysis revealed that the dissimilarity in nematode community patterns at HST and VW increased with depth. Plant feeders contributed to the community dissimilarity in the upper soil layers, while the impact of bacterial feeders increased with depth, indicating that the main resource changes along the depth profile.
Downloads
References
Albers, C. N., L. Ellegaard-Jensen, C. B. Harder, S. Rosendahl, B. E. Knudsen, F. Ekelund & J. Aamand (2015): Groundwater chemistry determines the prokaryotic community structure of waterworks sand filters. – Environmental Science & Technology 49(2): 839–846.
Andrássy, I. (1984): Klasse Nematoda (Ordnung Monhysterida, Desmoscolecida, Areolaimida, Chromadorida, Rhabditida). – Akademie-Verlag Berlin, Berlin: 509 pp.
Andrássy, I. (2005): Free-living nematodes of Hungary (Nematoda errantia) I, No. 3. – Hungarian Natural History Museum, Budapest: 518 pp.
Andrássy, I. (2007): Free-living nematodes of Hungary (Nematoda errantia), II. No. 4. – Hungarian Natural History Museum, Budapest: 496 pp.
Blaxter, M. (2003): Molecular systematics: Counting angels with DNA. – Nature 421: 122–124.
Bongers, T. (1990): The Maturity Index: an ecological measure of environmental disturbance based on nematode species composition. – Oecologia 83: 14–19.
Bongers, T. (1994): De Nematoden van Nederland. – Stichting Uitgeverij van de Koninklijke Natuurhistorische Vereniging, Utrecht: 408 pp.
Bongers, T. & M. Bongers (1998): Functional diversity of nematodes. – Applied Soil Ecology 10: 239–251.
Borgonie, G., B. Linage-Alvarez, A. O. Ojo, S. O. C. Mundle, L. B. Freese, C. Van Rooyen, ... & E. Van Heerden (2015): Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa. – Nature Communications 6(1): 1–12.
Bugge Harder, C., C. Nyrop Albers, S. Rosendahl, J. Aamand, L. Ellegaard-Jensen & F. Ekelund (2019): Successional trophic complexity and biogeographical structure of eukaryotic communities in waterworks’ rapid sand filters. – FEMS Microbiology Ecology 95(11): fiz148.
Burnand, J. & B. Hasspacher (1999): Waldstandorte bei der Basel. – Verlag des Kantons Basel-Landschaft, Basel.
de Man, J. G. (1880): Die einheimischen, frei in der reinen Erde und im süssen Wasser lebenden Nematoden. Vorläufiger Bericht und descriptiv-systematischer Teil. – Tijdschrift der Nederlandsche Dierkundige Vereeninging 5: 1–104.
Eisendle‐Flöckner, U. & S. Hilberg (2015): Hard rock aquifers and free‐living nematodes an interdisciplinary approach based on two widely neglected components in groundwater research. – Ecohydrology 8(3): 368–377.
Ewald, M., O. Glavatska & L. Ruess (2020): Effects of resource manipulation on nematode community structure and metabolic footprints in an arable soil across time and depth. – Nematology 22(9): 1025–1043.
Eyualem-Abebe, E., I. Andrássy & W. Traunspurger: (2006): Freshwater Nematodes: Ecology and Taxonomy. – CABI Publishing, Oxfordshire: 752 pp.
Ferris, H., T. Bongers & R. G. M. De Goede (2001): A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. – Applied Soil Ecology 18: 13–29.
Freckman, D. W. (1988): Bacterivorous nematodes and organic matter decomposition. – Agriculture Ecosystems & Environment 24: 195–217.
Frostegård, Å., E. Bååth & A. Tunlio (1993a): Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. – Soil Biology and Biochemistry 25(6): 723–730.
Frostegård, Å., A. Tunlid & E. Bååth (1993b): Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. – Applied and Environmental Microbiology 59(11): 3605–3617.
Geraert, E. (2008): The Tylenchidae of the world: identification of the family Tylenchidae (Nematoda). – Academia Press, Gent: 364 pp.
Hahn, H. J. (2006): The GW-Fauna-Index: A first approach to a quantitative ecological assessment of groundwater habitats. – Limnologica 36(2), 119–137.
Háněl, L. (2002): Comparison of soil nematode communities in spruce forests of the Žofín woodland area (Novohradské hory Mts.) and the upper Vydra river basin (Šumava Mts.), Czech Republic. – In: Biodiversity and Environmental Conditions of the Novohradské hory Mts. – České Budějovice: Jihočeská univerzita a Entomologický ústav AV ČR: 187–191.
Háněl, L. (2008): Nematode assemblages indicate soil restoration on colliery spoils afforested by planting different tree species and by natural succession. – Applied Soil Ecology 40(1): 86–99.
Hilberg, S. & U. Eisendle-Floeckner (2016): About faunal life in Austrian aquifers historical background and current developments. – Austrian Journal of Earth Sciences 109(1): 109–134.
Hodda, M., L. Peters & W. Traunspurger (2009): Nematode diversity in terrestrial, freshwater aquatic and marine systems. – In: Wilson, M. J. & T. Kakouli-Duarte (eds): Nematodes as Environmental Indicators. – CAB International, UK: 45–93.
Hodson, A. K., H. Ferris, A. D. Hollander & L. E. Jackson (2014): Nematode food webs associated with native perennial plant species and soil nutrient pools in California riparian oak woodlands. – Geoderma 228: 182–191.
Holden. P. A. & N. Fierer (2005): Microbial processes in the vadose zone. – Vadose Zone Journal 4(1): 1–21.
Hu, C., X. G. Xia, X. M. Han, Y. F. Chen, Y. Qiao, D. H. Liu & S. L. Li (2018): Soil nematode abundances were increased by an incremental nutrient input in a paddy-upland rotation system. – Helminthologia 55(4): 322–333.
Ingham, R. E., J. A. Trofymow, E. R. Ingham & D. C. Coleman (1985): Interactions of bacteria, fungi, and their Nematode grazers – Effects on nutrient cycling and plant- growth. – Ecological Monographs 55: 119–140.
Kieft, T. L. & F. J. Brockmann (2001): Subsurface microbiology and biochemistry. – In: Frederickson, J. K & M. Fletcher (eds): Vadose Zone Microbiology. – Wiley-Liss, New York: 141–169.
Knox, O., K. Polain, E. Fortescue & B. Griffiths (2020): Distribution and restricted vertical movement of nematodes in a heavy clay soil. – Agronomy 10(2): 221.
Kuzyakov, Y. & X. Xu (2013): Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. – New Phytologist 198(3): 656–669.
Lawton, J. H., D. E. Bignell, G. F. Bloemers, P. Eggleton & M. E. Hodda (1996): Carbon flux and diversity of nematodes and termites in Cameroon forest soils. – Biodiversity and Conservation 5: 261–273.
Lazarova, S. S., R. G. de Goede, V. K. Peneva & T. Bongers (2004): Spatial patterns of variation in the composition and structure of nematode communities in relation to different microhabitats: a case study of Quercus dalechampii Ten. forest. – Soil Biology and Biochemistry 36(4): 701–712.
Liang, W., X. Zhang, Q. Li, Y. Jiang, W. Ou & D. A. Neher (2005): Vertical distribution of bacterivorous nematodes under different land uses. – Journal of Nematology 37:
– 258.
Liu, M., X. Chen, J. Qin, D. Wang, B. Griffiths & F. Hu (2008): A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. – Applied Soil Ecology 40(2): 250–259.
Margenot, A. J. & A. K. Hodson (2016): Relationships between labile soil organic matter and nematode communities in a California oak woodland. – Nematology 18(10): 1231–1245.
Meyl, A. (1960): Fadenwürmer (Nematoden). – Kosmos-Verlag/Franckh’sche Verlagshandlung, Stuttgart: 73 pp.
Nishiwaki, J., Y. Kawabe, T. Komai & M. Zhang (2018): Decomposition of gasoline hydrocarbons by natural microorganisms in Japanese soils. – Geosciences 8(2): 35.
Odukoya, A. M., O. Oresanya & A. F. Abimbola (2013): Biogeochemical and engineering characteristics of soils and groundwater around a dumpsite. – Earth Sciences Research Journal 17(1): 53–60.
Parádi, I. & J. Baar (2006): Mycorrhizal fungal diversity in willow forests of different age along the river Waal, The Netherlands. – Forest Ecology and Management 237(1-3): 366–372.
Pavao-Zuckerman, M. A. & D. C. Coleman (2007): Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. – Applied Soil Ecology 35(2): 329–339.
Petersen, H. & M. Luxton (1982): A comparative - analysis of soil fauna populations and their role in decomposition processes. – Oikos 39(3): 288–388.
Renčo, M., V. Čermák & A. Čerevková (2012): Composition of soil nematode communities in native birch forests in Central Europe. – Nematology 14(1): 15–25.
Ronn, R., I. K. Thomsen & B. Jensen (1995): Naked amoebae, flagellates, and nematodes in soils of different texture. – European Journal of Soil Biology 31(3): 135–141.
Ruess, L. (1995): Studies on the nematode fauna of an acid forest soil: Spatial distribution and extraction. – Nematologica 41: 229–239.
Rüetschi, D. (2004): Basler Trinkwassergewinnung in den Langen-Erlen – Biologische Reinigungsleistungen in den bewaldeten Wässerstellen. – Physiogeographica (Basel) 34: 1–348.
Scharroba, A., S. Kramer, E. Kandeler & L. Ruess (2016): Spatial and temporal variation of resource allocation in an arable soil drives community structure and biomass of nematodes and their role in the micro-food web. – Pedobiologia 59(3): 111–120.
Schütz, K., A. Dill, P. Nagel & S. Scheu (2008): Structure and functioning of earthworm communities in woodland flooding systems used for drinking water production. – Applied Soil Ecology 39: 342–351.
Schütz, K., E. Kandeler, P. Nagel, S. Scheu & L. Ruess (2010): Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoils. – FEMS Microbiology Ecology 72: 445–455.
Schütz, K., P. Nagel, W. Vetter, E. Kandeler & L. Ruess (2009): Flooding forested groundwater areas modifies microbial communities from top soil to groundwater table. – FEMS Microbiology Ecology 67: 171–182.
Shannon, C. E. & W. Weaver (1949): The mathematical theory of communication. – The University of Illinois Press,
Urbana: 117 pp.
Villate, L., V. Fievet, B. Hanse, F. Delemarre, O. Plantard, D. Esmenjaud & M. van Helden (2008): Spatial distribution of the dagger nematode Xiphinema index and its associated Grapevine fanleaf virus in French vineyard. – Phytopathology 98(8): 942–948.
van den Hoogen, J., S. Geisen, D. Routh, H. Ferris, W. Traunspurger, D. A. Wardle ... & T. W. Crowther (2019): Soil nematode abundance and functional group composition at a global scale. – Nature 572(7768): 194–198.
Wang, J., M. Li, X. Zhang, X. Liu, L. Li, X. Shi ... & G. Pan (2019): Changes in soil nematode abundance and composition under elevated [CO 2] and canopy warming in a rice paddy field. – Plant and Soil 445(1): 425–437.
Wasilewska, L. (1998): Changes in the proportions of groups of bacterivorous soil nematodes with different life strategies in relation to environmental conditions. – Applied Soil Ecology 9: Sp. Iss. SI 215–220.
Wasof, S., A. De Schrijver, S. Schelfhout, M. P. Perring, E. Remy, J. Mertens ... & K. Verheyen (2019): Linkages between aboveground and belowground community compositions in grasslands along a historical land-use intensity gradient. - Plant and Soil 434(1-2): 289–304.
Wu, L. Y. (1961): Paratylenchus tenuicaudatus n. sp. (Nematoda: Criconematidae). – Canadian Journal of Zoology 39(2): 163–165.
Yeates, G. W. (2003): Nematodes as soil indicators: functional and biodiversity aspects. – Biology and Fertility of Soils 37(4): 199–210.
Yeates, G. W. & T. Bongers (1999): Nematode diversity in agroecosystems. – In: Paoletti, M. (eds): Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes. – Elsevier, Netherlands: 113–135.
Yeates, G. W. & P. A. Williams (2001): Influence of three invasive weeds and site factors on soil microfauna in New Zealand. – Pedobiologia 45: 367–383.
Yeates, G. W., M. F. Hawke & W. C. Rijkse (2000): Changes in soil fauna and soil conditions under Pinus radiata agroforestry regimes during a 25-year tree rotation. – Biology and Fertility of Soils 31(5): 391–406.
Yeates, G. W., T. Bongers, R. G. M. De Goede, D. W. Freckman & S. S. Georgieva (1993): Feeding habits in soil nematode families and genera: an outline for soil ecologists. – Journal of Nematology 25: 315–331.
Downloads
Published
Issue
Section
License
All articles on www.soil-organisms.org may be read, copied, distributed, and (in limited quantity) printed for non-commercial, private, scientific purposes.