The ecology of Central European non-arboreal ants – 37 years of a broad-spectrum analysis under permanent taxonomic control

+ Electronic supplement is linked to the online version of the paper

Authors

  • Bernhard Seifert Senckenberg Museum für Naturkunde Görlitz, Am Museum 1, PF 300154, 02806 Görlitz, Germany

Keywords:

ant biomass, ant species richness, realized and fundamental niche, sibling species, Gause’s Law, calibrated soil temperature, global warming, range prediction, nature conservation

Abstract

Methods: A broad spectrum analysis on ant ecology was carried out in the years 1979 to 2015, including 232 study plots in Central Europe within 46.5° N to 54.1° N, 9.3°E to 15.6°E and from 5 to 2382 meters above sea level. Basically each type of terrestrial, non-arboreal habitat in which ants are able to reproduce was investigated and the full environmental gradient for almost each environmental variable was covered. The whole study was under consistent taxonomic control, assisted by holding of a permanent and curated museum collection with updating of the data regarding newly discovered cryptic species. Recording of ant biodiversity and abundance was thoroughly based on direct localization of altogether 17,000 nest sites with determination of nest density per unit area. Two new methods for estimation of ant biomass and ant species richness are introduced. A total of 17 niche dimensions were recorded: 6 physico-chemical factors, 7 structural factors and 4 species-defined factors. The paper represents the first ecological study with a broad and thorough application of the soil temperature determination system CalibSoil which will allow future ecologists comparable determinations of the thermal behavior of hypo- and epigaean organisms within the context of global warming. It is shown that approximations of fundamental niche space and fundamental niche overlap are possible from field data on the basis of three factors: (a) temporal disclosure of hidden fundamental niche space during dynamic processes, (b) mathematic decoupling of fundamental niche space from particular study plot situations by subdivision of niche dimensions into classes and (c) idealization of niche space by smoothing of frequency distributions for all niche variables. A method to estimate interspecific competitive exclusion based on a model that relates realized niche overlap to fundamental niche overlap is provided.

Results: Thanks to the very broad environmental gradients considered and the high number of data points, it was possible to show highly significant relations of species richness and ant biomass of ant assemblages to nearly each investigated environmental variable. The curve characteristics of these relations resembled in the majority of cases skewed or unskewed optimum curves whereas linear or quasi-linear relations were rare. The most important factors directing niche segregation of ants in the temperate zone are soil moisture and maximum and mean soil temperature whereas herb-layer phytodensity, ranking at the penultimate place among 12 assessed environmental variables, is thought to have mainly an indirect, but very strong, effect by altering moisture and temperature conditions. The distribution of 86 individual ant species relative to environmental variables is shown. 27 categories or types of habitat were compared for species richness and biomass. By far the highest species richness and the highest biomass for open land habitats was found in xerothermous to mesoxerophytic grasslands on limestone or chalk with a mean value of 13.1 species/100 m² and 8.8 g fresh weight/m². Within the woodland habitats, the highest species richness and biomass was achieved with 12.5 species/100 m² and  5.5 g fresh weight/m²  in xerothermous to tempered Quercus wood whereas mature Fagus woods (0.35 species/100 m², 0.07 g fresh weight/m²) and Picea-abies-dominated woodland (0.63 species/100 m², 0.27 g fresh weight/m²) showed the poorest ant assemblages. Convincing evidence was presented for the theory of E. Odum that narrow niche spaces increase the number of species a habitat may hold and that  species richness and evenness show a clear positive correlation for ant assemblages consisting of more than 5 species/100 m². Strong statistical evidence is provided that interspecific competitive exclusion increases with growing relatedness: 20 pairs of closely related species (the collective SIBLIN) had significantly lower coexistence values than 232 congeneric pairs of all other species from only the genera to which the collective SIBLIN belonged (ANOVA F1,232 = 9.98, p < 0.002). It was shown that 22–31 % of variance of mean seasonal soil temperature TMEAN was attributable to the habitat-specific factors stratification and density of phytolayers, orography (aspect) and properties of ground material. These data show that predictions of future zoogeographic shifts due to global warming based on meteorological simulations only will remain inaccurate as long as the habitat-dependent temperature component is neglected.

Downloads

Download data is not yet available.

References

Agosti, D., J. D. Majer, L. E. Alonso & T. R. Schultz (2000): Ants – standard methods for measuring and monitoring biodiversity. – Smithonian Institution Press, Washington and London: 280 pp.

Bengston, S. E & A. Dornhaus (2013): Colony size does not predict foraging distance in the ant Temnothorax rugatulus: a puzzle for standard scaling models. – Insectes Sociaux 60: 93–96.

Berman, D. I., A. V. Alfimov, Z. A. Zhigulskaya & A. N. Leirikh (2010): Overwintering and cold-hardiness of ants in the northeast of Asia. – Pensoft, Sofia-Moscow: 294 pp.

Boero, F. (2010):The study of species in the era of biodiversity: A tale of stupidity. –Diversity 2: 115–126 [https://www.doi.org/10.3390/d2010115].

Boomsma, J. J.,G. A. van der Lee & T. M. van der Have (1982): The Production ecology of Lasius niger (Hymenoptera: Formicidae) in successive coastal dune valleys. – Journal of Animal Ecology 51:975–991.

Bourke, A.F.G., T.M. Van der Have & N.R. Franks (1988): Sex ratio determination and worker reproduction in the slave-making ant Harpagoxenus sublaevis. – Behavioural Ecology and Sociobiology 23: 333–345.

Breen, J. (1979): Nest sites of Formica lugubris (Hymenoptera: Formicidae) in Irish plantation woods. – Journal of Life Sciences of the Royal Dublin Society 1: 13–32.

Brian, M. V. (1972): Population turnover in wild colonies of the ant Myrmica. – Ekologia Polska 20(5): 43–53.

Brian, M. V., G.W.Elmes & A.F.Kelly (1967): Populations of the ant Tetramorium caespitum Latreille. – Journal of Animal Ecology 36: 337–342.

Bundesministerium für Ernährung, Landwirtschaft und Forsten (1999): Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland. Münster-Hiltrup: Landwirtschaftsverlag.

Buschinger, A. (1973): The role of daily temperature rhythms in brood development of ants of the tribe Leptothoracini (Hymenoptera; Formicidae). In: Wiesner, W. (ed): Effects of temperature on ectothermic organisms. – Springer, Berlin, Heidelberg, New York: 229–232.

Buschinger, A. (1978): Genetisch bedingte Entstehung geflügelter Weibchen bei der sklavenhaltenden Ameise Harpagoxenus sublaevis (Nyl.) (Hym., Form.). – Insectes Sociaux 25(2): 163–172.

Buschinger, A., G. Frenz & W. Wunderlich (1975): Untersuchungen zur Geschlechtstierproduktion der dulotischen Ameise Harpagoxenus sublaevis (Nyl.) (Hym. Formicidae). – Insectes Sociaux 22:169–182.

Buschinger, A. (1999): Stenamma debile (Hymenoptera, Formicidae): Faculatative polygyny, and an extreme 1997 sex ratio. – Insectes Sociaux 46: 53–57.

Buschinger, A. & J. Heinze (2001): Stenamma debile (Hymenoptera, Formicidae): Productivity and sex allocation across three years. – Insectes Sociaux 48: 110–117.

Buschinger, A. & M. Schreiber (2002): Queen polymorphism and queen-morph related facultative polygyny in the ant, Myrmecina graminicola (Hymenoptera, Formicidae). – Insectes Sociaux 49: 344–353.

Campbell, H., M. D. E. Fellowes & J. M. Cook (2015): Species diversity and dominance-richness relationships for ground and arboreal ant (Hymenoptera: Formicidae) assemblages in Namibian desert, saltpan, and savannah. – Myrmecological News 21: 37–47.

Chen, Y. H. & E. J. H. Robinson (2013): A comparison of mark–release–recapture methods for estimating colony size in the wood ant Formica lugubris. – Insectes Sociaux 60: 351–359.

Czechowski, W. (1979): Competition between Lasius niger (L.) and Myrmica rugulosa (Nyl.). – Annales Zoologici 38: 81–91.

Dahms, H., C. Wellstein, V. Wolters & J. Dauber (2005): Effects of management practices on ant species richness and community composition in grasslands (Hymenoptera: Formicidae). – Myrmecologische Nachrichten 7: 9–16.

Dahms, H., V. Wolters & J. Dauber (2007):Ants (Hymenoptera: Formicidae) in restored seminatural grasslands in Sweden: species richness and community composition. – Myrmecological News 10: 103.

Dauber, J. & V. Wolters. (2004): Edge-effects on ant community structure and species richness in an agricultural landscape. – Biodiversity and Conservation 13: 901–915.

Dauber, J. & V. Wolters (2005): Colonization of temperate grassland by ants. – Basic and Applied Ecology 6: 83–91.

Dean, W. R. J. & R. I. Yeaton (1993): The effects of harvester ant Messor capensis nest-mounds on the physical and chemical properties of soils in the southern Karoo, South Africa. – Journal of Arid Environments 25: 249–260.

Degorski, M. (1982): Usefulness of Ellenberg bioindicators in characteristic plant communities and forest habitats on the basis of data from the range “Grabowy” in Kampinos Forest. – Ekologia Polska 30: 453–477.

Dengler, J. (2004): Phytodiversitätsmuster in nordostdeutschen Trockenrasen. – Kieler Notizen zur Pflanzenkunde in Schleswig-Holstein und Hamburg 32: 14–19.

De Vroey, C. (1978): Food competition in meadow ants. – Proceedings of the 8th Symposium of the Social Insects Section of the Polish Entomological Society, Puławy:31–35.

Dekoninck, W., F. Hendrickx, P. Grootaert & J. P. Maelfait (2010): Present conservation status of red wood ants in north-western Belgium: worse than previously, but not a lost cause. – EuropeanJournal of Entomology 107: 209–218.

Dunger, W. (1968): Die Entwicklung der Bodenfauna auf rekultivierten Kippen und Halden des Braunkohlentagebaus - Ein Beitrag zur Standortdiagnose. – Abhandlungen und Berichte des Naturkundemuseums Görlitz 43 (2): 93.

Dunger, W. & H. J. Fiedler (1997): Methoden der Bodenbiologie. – Gustav Fischer, Jena, Stuttgart, Lübeck, Ulm: 539 pp.

Eichhorn, O. (1963): Die höhen- und waldtypenmäßige Verbreitung der nützlichen Waldameisen in den Ostalpen. – Waldhygiene 5: 129–135.

Ellenberg, H., H. E. Weber, R. Düll, V. Wirth & W. Werner (2001): Zeigerwerte von Pflanzen in Mitteleuropa. – Goltze, Göttingen: 262 pp.

Elmes, G. W. (1973): Observations on the density of queens in natural colonies of Myrmica rubra L: (Hymenoptera: Formicidae). – Journal of Animal Ecology 42: 761–771.

Elmes, G. W. (1975): Population studies on the genus Myrmica (Hymenoptera, Formicidae), with special reference to Southern England. – PhD thesis, University of London.

Elmes, G. W. (1987): Temporal variations in colony populations of the ant Myrmica sulcinodis. I.Changes in queen number, worker number and spring production. – Journal of Animal Ecology 56: 573–583.

Elmes, G. W. & A. M. Abbott (1981): Colony populations of Myrmica schencki Emery collected in Jutland, Denmark. – Natura Jutlandica 19: 53–56.

Elmes, G. W. & J. Petal (1990): Queen number as an adaptable trait: evidence from wild populations of two red ant species (Genus Myrmica). – Journal of Animal Ecology 59: 675–690.

Elmes, G. W. & J. C. Wardlaw (1981): The quantity and quality of overwintered larvae in five species of Myrmica (Hymenoptera, Formicidae). – Journal of Zoology, London 193: 429–446.

Elmes, G. W. & J. C. Wardlaw (1982c): Variations in populations of Myrmica sabuleti and M. scabrinodis (Formicidae: Hymenoptera) living in Southern England. – Pedobiologia 23: 90–97.

Elmes, G. W. & J. C. Wardlaw (1983): A comparison of the effect of temperature on the development of large hibernated larvae of four species of Myrmica (Hym. Formicidae). – Insectes Sociaux 30: 106–118.

Felke, M. & A. Buschinger (1999): Social organization, reproductive behavior and ecology of Leptothorax acervorum (Hymenoptera,Formicidae) from the Sierra de Albarracin in central Spain. – Insectes Sociaux 46:84–91.

Finke, D. L. & W. E. Snyder (2008) Niche partitioning increases resource exploitation by diverse communities. – Science 321: 1488–1490 [https://www.doi.org/10.1126/science.1160854].

Foitzik, S., M. Haberl, J. Gadau & J. Heinze (1997): Mating frequency of Leptothorax nylanderi ant queens determined by microsatellite analysis. – Insectes Sociaux 44: 219–227

Foitzik, S., M. Strätz & J. Heinze (2003): Ecology, life history and resource allocation in the ant, Leptothorax nylanderi. – Journal of Evolutionary Biology 16: 670–680.

Fokuhl, G., J. Heinze & P. Poschlod (2012): Myrmecochory by small ants – beneficial effects through elaiosome nutrition and seed dispersal. – Acta Oecologica 38: 71–76.

Francoeur, A. (1983): The ant fauna near the tree-line in Northern Quebec (Formicidae, Hymenoptera). – Nordicana 47: 177–180.

Frouz, J., M. Holec & J. Kalcik (2003): The effect of Lasius niger (Hymenoptera, Formicidae) ant nests on selected soil chemical properties. – Pedobiologia 47: 205–212.

Frouz, J. & V. Jilkova (2008): The effect of ants on soil properties and processes (Hymenoptera: Formicidae). – Myrmecological News 11: 191–199.

Galle, L. (1972a): Formicidae populations of the ecosystems in the environs of Tiszafüred. – Tiszia (Szeged) 7: 51–68.

Galle, L. (1972b): Study of ant populations in various grassland ecosystems. – Acta Biologica Szeged 18: 159–164.

Galle, L. (1978a): Dispersion of the nests of an ant species. –Acta Biologica Szeged 24: 105–109.

Galle, L. (1980): Dispersion of high-density ant populations in sandy soil grassland ecosystems. – Acta Biologica Szeged 26: 129–135

Gause, G. F. (1932): Experimental studies on the struggle for existence: 1. Mixed population of two species of yeast. – Journal of Experimental Biology 9: 389–402.

Geiger, R. (1927): Das Klima der bodennahen Luftschicht. – Viehweg & Sohn, Braunschweig, 1st edn.: 246 pp.

Geiger, R. (1961): Das Klima der bodennahen Luftschicht. –Viehweg & Sohn, Braunschweig, 4th edn.: 646 pp.

Heinze, J. & B. Hölldobler (1994): Ants in the cold. – Memorabilia Zoologica 48: 99–108.

Heinze, J., N. Lipski & B. Hölldobler (1992): Reproductive competition in colonies of the ant Leptothorax gredleri. – Ethology 90: 265–278.

Heinze, J. & N. Lipski (1990): Fighting and ursurpation in colonies of the Palaearctic ant Leptothorax gredleri. – Naturwissenschaften 77: 493–495.

Heinze, J., N. Lipski, K. Schlehmeyer & B. Hölldobler (1995): Colony structure and reproduction in the ant Leptothorax acervorum. – Behavioural Ecology 6(4): 359–367.

Heinze, J. & D. Ortius (1991): Social organization of Leptothorax acervorum from Alaska (Hymenoptera:Formicidae). – Psyche 98 (2-3): 227–240.

Hempel, W. (2008): Die historische Entwicklung des Wirtschaftgrünlandes in Sachsen. – Berichte der Naturforschenden Gesellschaft der Oberlausitz 16: 3–18.

Holec, M. & J. Frouz (2005): Ant (Hymenoptera:Formicidae) communities in reclaimed and unreclaimed brown coal mining spoil dumps in the Czech Republic. – Pedobiologia 49: 345–357.

Horstmann, K. (1982): Die Energiebilanz der Waldameisen (Formica polyctena) in einem Eichenwald. – Insectes Sociaux 29: 402–421.

Hurlbert, S. H. (1971): The nonconcept of species diversity: a critique and alternative parameters. – Ecology 52: 577–586.

Huston, M. A. (1997): Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. – Oecologia (Berlin) 110: 449–460.

Hutchinson, G. E. (1957): Concluding remarks. – Cold Spring Harbor Symposia on Quantitative Biology 22 (2): 415–427.

Jakubczyk, H., Z. Czerwinski & J. Petal (1972): Ants as agents of the soil habitat changes. – Ekologia Polska 20: 153–161.

Jäger, E. J. & K. Werner (eds.) 2005: Exkursionsflora von Deutschland, Band 4, Gefäßpflanzen: Kritischer Band. – Spektrum Akademischer Verlag, München: 980 pp.

Kafer, J. & J. P. M. Witte (2004): Cover-weighted averaging of indicator values in vegetation analyses. – Journal of Vegetation Science 15 (5): 647–652.

Kennedy, A. D. (1997): Bridging the gap between general circulation model (GCM) output and biological microenvironments. – International Journal of Biometeorology 40: 119–122.

Kylin, H. (1926): Über Begriffsbildung und Statistik in der Pflanzensoziologie. – Botaniska Notiser, Lund, year 1928: 81–180.

Kupyanskaya, A. N. (1990): Murav’i (Hymenoptera, Formicidae) dal’nego vostoka. – Dal’nevostochny Tsentr Akademiya Nauk SSSR, Vladivostok: 258 pp.

Lache, W. D. (1976): Wasser- und Stickstoffversorgung sowie Mikroklima von Heide und Binnedünengesellschaften Nordwestdeutschlands. – PhD thesis, University of Göttingen: 96 pp.

Landolt, E., B. Bäumler, A. Ehrhardt, O. Hegg, F. Klötzli, W. Lämmler, M. Nabis, K. Rudmann-Mauerer, F. H. Schweingruber, J. P. Theurillat, E. Urmi, M. Vust & T. Wohlgemuth (2010): Flora indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. – Haupt, Bern-Stuttgart-Wien: 378 pp.

Latour, B. & S. Woolgar (1986): Laboratory Life. The Construction of Scientific Facts. 2nd ed. Princton University Press: 296 pp.

Lawitzky, G. (1988): Ökologie und Lebensweise der primitiven Myrmicine Stenamma westwoodi Westwood 1840 (Hymenoptera, Formicidae). – Thesis, University of München: 113 pp.

Legendre, P. & L. Legendre (1998): Numerical ecology. – Elsevier, Amsterdam: 852 pp.

Levine, J. M. & J. Hille Ris Lambers (2009): The importance of niches for the maintenance of species diversity. – Nature 461: 254–257. DOI10.1038/nature08251

Lipski, N., J. Heinze & B. Hölldobler (1992): Social organization of three European Leptothorax species (Hymenoptera, Formicidae). – In: J. Billen (ed.): Biology and evolution of social insects. – Leuven University Press, Leuven: 287–290.

Lipski, N., J. Heinze & B. Hölldobler (1994): Untersuchungen zu Koloniestruktur und genetischem Verwandtschaftsgrad bei Leptothorax muscorum. – Mitteilungen der Deutschen Gesellschaft für angewandte Entomologie 9: 355–359.

Lützke, R. (1958): Vergleichende Untersuchungen der Temperaturverhältnisse auf freiem Feld, in Waldbeständen und auf Waldlichtungen mit Hilfe von thermoelektrischen Registrierungen und Messungen bis zur Höhe der Baumkronen. – PhD thesis, Humboldt University Berlin: 217 pp.

Mabelis, A. A. & J. J. Korczyńska (2016): Long-term impact of agriculture on the survival of wood ants of the Formica rufa group (Formicidae). – Insect Conservation 20: 621–628 [https://www.doi.org/10.1007/s10841-016-9893-7].

Magurran, A. E. (1988): Ecological diversity and its measurement. – Princeton University Press, Princeton, N. J.: 179 pp.

Martin, P., M. Loreau & G. Josens (1995): Production in the ant Leptothorax unifasciatus (Hymenoptera, Formicidae). – Acta Oecologica 16: 295–311.

Marikovsky, P. I. (1967): Biologija murav’ya Formica sanguinea Latr. (Hym., Formicidae) v usloviyakh Tjan’-Shanya. – Entomologicheskoye Obozrenie 46: 81–91.

McNaughton, S. J. (1977). Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. – American Naturalist 111: 515–525.

Michaelis, L. & M.L.Menten (1913): Die Kinetik der Invertinwirkung. – Biochemische Zeitschrift 49: 333–369.

Mitrus, S. (2013): Cost to the cavity-nest ant Temnothorax crassispinis (Hymenoptera: Formicidae) of overwintering aboveground. – European Journal of Entomology 110: 177–179.

Müller, H. J., W. Schönborn, G. Stöcker & D. Uhlmann (1977): Zu einigen Grundbegriffen der theoretischen Ökologie. –Biologische Rundschau 15: 196–198.

Nielsen, M. G. (1972): An attempt to estimate energy flow through a population of workers of Lasius alienus (Först.) (Hymenoptera: Formicidae). – Natura Jutlandica 16: 99–107.

Nielsen, M. G. (1974a): Number and biomass of worker ants in a sandy heath area in Denmark. – Natura Jutlandica 17: 93–95.

Nielsen, M. G. (1974b): The use of Lincoln Index for estimating the worker population of Lasius alienus (Först.) (Hymenoptera: Formicidae). – Natura Jutlandica 17: 87–90.

Nielsen, M. G. (1978): Production of sexuals in nests of the ant Lasius alienus (Först.) (Hymenoptera: Formicidae). – Natura Jutlandica 20: 251–254.

Nielsen, M. G., N. Skyberg & L.Winther (1976): Studies on Lasius flavus F. (Hymenoptera, Formicidae): I. Population density, biomass, and distribution of nests. – Entomologiske Meddelelser 44: 65–75.

Nielsen, M. G. (1977): Nests of Lasius flavus F. on tidal meadows in Denmark. – Proceedings IUSSI 8th International Congress,Wageningen: 140–141.

Nocke, T. (1998): Diversität der Formicidenfauna im Landnutzungsmosaik der nordostdeutschen Tiefebene am Beispiel des Biosphärenreservates Schorfheide-Chorin. – Thesis, Technical University Dresden: 45 pp.

Oddershede, A., J. C. Svenning & C. Damgaard (2015): Topographically determined water availability shapes functional patterns of plant communities within and across habitat types. – Plant Ecology 216: 1231–1242.

Odum, E. P. (1971): Fundamentals of Ecology. 3rd edition. W. B. Saunders Company, Philadelphia: 575 pp.

Odum, E. P. (1983): Grundlagen der Ökologie. – Band 1: Grundlagen,2nd edition, Thieme, Stuttgart: 476 pp.

Otto, D. (1960): Statistische Untersuchungen über die Beziehungen zwischen Königinnenzahl und Arbeiterinnengröße bei den Roten Waldameisen (engere Formica rufa L.-Gruppe). – Biologisches Zentralblatt 79: 719–739.

Partridge, L. W, K. A. Partridge & N. R. Franks (1997): Filed survey of a monogynous leptothoracine ant (Hymenoptera, Formicidae): evidence of seasonal polydomy ? –Insectes Sociaux 44: 75–83.

Peakin, G. J. (1972): Aspects of productivity in Tetramorium caespitum L. – Ekologia Polska 20 (6): 55–63.

Pech, P. (2013): Myrmica curvithorax (Hymenoptera: Formicidae) in the Czech Republic: a contribution to the knowledge of its distribution and biology. – Klapalekiana 49: 197–204.

Pedersen, J. S. & J. J. Boomsma (1999): Effect of Habitat saturation on the number and turnover of queens in the polygynous ant, Myrmica sulcinodis.– Journal of Evolutionary Biology 12: 903–917.

Petal, J. (1972): Methods of investigating the productivity in ants. – Ecologia Polska 20 (2): 1–14.

Petal, J. (1976): The effect of mineral fertilization on ant populations in meadows.– Polish Ecological Studies 2 (4): 209–218.

Pianka, E. R. (1976): Competition and niche theory. – In: May, R. M. (ed.): Theoretical ecology: Principles and applications. – W. B. Saunders, Philadelphia: 114–141.

Pontin, A. J. (1978): The numbers and distribution of subterranean aphids and their exploitation by the ant Lasius flavus (Fabr.). – Ecological Entomology 3: 203–207.

Poschlod, P. (2015): Geschichte der Kulturlandschaft. Entstehungsursachen und Steuerungsfaktoren der Entwicklung der Kulturlandschaft, Lebensraum- und Artenvielfalt in Mitteleuropa. Eugen Ulmer, Stuttgart: 320 pp.

Renkonen, O. (1938): Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. – Annales Zoologici Societatis Zoologicae-Botanicae Fennicae Vanamo 6: 1–231.

Rohe, W. (2003): Grünlandtypen und deren Ameisenfauna (Hymenoptera:Formicidae) in Rheinland-Pfalz sowie Folgerungen für eine nachhaltige Nutzung. – Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft 393: 169–175.

Rosengren, R. & L. Sundström (1987): The foraging system of a red wood ant colony (Formica s.str.) – collecting and defending food through an extended phenotype. – Experientia Supplementum, Basel, 54: 117–137.

Sanders, H. (1968): Marine benthic diversity: a comparative study. – American Naturalist 102: 243–282.

Schaffers, A. P. & K. V. Sykora (2000): Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. – Journal of Vegetation Science 11 (2): 225–244.

Schoener, T. S. (1974): Resource partitioning in ecological communities. – Science 185: 27–39.

Seifert, B. (1982): Die Ameisenfauna einer Rasen-Wald-Catena im Leutratal bei Jena. – Abhandlungen und Berichte des Naturkundemuseums Görlitz 56 (6): 1–18.

Seifert, B. (1983): The taxonomical and ecological status of Lasius myops Forel and first description of its males. – Abhandlungen und Berichte des Naturkundemuseums Görlitz 57 (6): 1–16.

Seifert, B. (1986): Vergleichende Untersuchungen zur Habitatwahl von Ameisen (Hymenoptera: Formicidae) im mittleren und südlichen Teil der DDR. – Abhandlungen und Berichte des Naturkundemuseums Görlitz 59 (5): 1–124.

Seifert, B. (1987): A model to estimate interspecific competitive displacement in ants. – Zoologische Jahrbücher für Systematik 114: 451–469.

Seifert, B. (1991): Lasius platythorax n.sp., a widespread sibling species of Lasius niger. – EntomoL. Gener., Stuttgart 16 (1): 069–081.

Seifert, B. (1992): A taxonomic revision of the Palaearctic members of the ant subgenus Lasius s.str. (Hymenoptera: Formicidae). – Abhandlungen und Berichte des Naturkundemuseums Görlitz 66 (5): 1–67.

Seifert, B. (1995): Two new Central European subspecies of Leptothorax nylanderi (Förster,1850) and Leptothorax sordidulus Müller,1923 (Hymenoptera:Formicidae). Abhandlungen und Berichte des Naturkundemuseums Görlitz 68 (7): 1–18.

Seifert, B. (1997): Formica lusatica n.sp. - a sympatric sibling species of Formica cunicularia and Formica rufibarbis (Hymenoptera Formicidae). – Abhandlungen und Berichte des Naturkundemuseums Görlitz 69 (5): 3–16.

Seifert, B. (2000): Myrmica lonae Finzi, 1926 - a species separate from Myrmica sabuleti Meinert, 1861 (Hymenoptera: Formicidae). – Abhandlungen und Berichte des Naturkundemuseums Görlitz 72 (2): 195–205.

Seifert, B. (2007): Die Ameisen Mittel- und Nordeuropas. – Lutra, Tauer: 368 pp.

Seifert, B. (2008): The ants of Central European tree canopies (Hymenoptera:Formicidae) - an underestimated population? – In: Floren, A. & J. Schmidl, J.(eds): Canopy arthropod research in Europe. – Bioform Entomology, Nuremberg: 157–173.

Seifert, B. (2009): Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. – Myrmecological News 12: 149–166.

Seifert, B. (2014): A pragmatic species concept applicable to all eukaryotic organisms independent from their mode of reproduction or evolutionary history. – Soil Organisms 86 (1): 85–93.

Seifert, B. (2016a): The supercolonial European wood ant Formica paralugubris Seifert, 1996 (Hymenoptera: Formicidae) introduced to Canada and its predicted role in Nearctic forests. – Myrmecological News 22: 11–22.

Seifert, B. (2016b): Inconvenient hyperdiversity – the traditional concept of “Pheidole pallidula” includes four cryptic species (Hymenoptera: Formicidae). – Soil Organisms 88 (1): 1–17.

Seifert, B. & S. Csösz (2015): Temnothorax crasecundus sp. n. – a cryptic Eurocaucasian ant species (Hymenoptera, Formicidae) discovered by Nest Centroid Clustering. – Zookeys 479: 37–64 [http://dx.doi.org/10.3897/zookeys.479.8510].

Seifert, B., C. Galkowski (2016): The Westpalaearctic Lasius paralienus complex (Hymenoptera: Formicidae) contains three species. – Zootaxa4132 (1): 044–058 [http://doi.org/10.11646/zootaxa.4132.1.4].

Seifert, B., M. Ritz & S. Csösz (2013): Application of

Exploratory Data Analyses opens a new perspective in morphology-based alpha-taxonomy of eusocial organisms. – Myrmecological News 19: 1–15.

Seifert, B. & L. Pannier (2007): A method for standardized description of soil temperatures in terrestrial ecosystems. – Abhandlungen und Berichte des Naturkundemuseums Görlitz 78 (2): 151–182.

Seifert, B., P. Fiedler & R. Schultz (2016): Escape to the high canopy – thermal deficiency causes niche expansion in a forest floor ant. – Insect Science 24: 699–707 [https://www.doi.org/10.1111/1744-7917.12351].

Seifert, B., P. Fiedler & R. Schultz (2013): Unexpected niche expansion in a forest-floor ant (Hymenoptera: Formicidae). – Entomologische Zeitschrift, Stuttgart 123: 225–229.

Seifert, B. & R. Schultz (2009): A taxonomic revision of the Formica rufibarbis FABRCIUS, 1793 group (Hymenoptera: Formicidae). – Myrmecological News 12: 255–272.

Siegel, A. F. (2006): Rarefaction Curves. – In: Kotz, S., C. B. Read, N. Balakrishnan & B. Vidakovic. – Encyclopedia of Statistical Sciences [https://doi.org/10.1002/0471667196.ess2195.pub2].

Sörensen, U. & G. H. Schmidt (1987): Vergleichende Untersuchungen zum Beuteeintrag der Waldameisen (Genus: Formica, Hymenoptera) in der Bredstedter Geest (Schleswig-Holstein). – Zeitschrift für Angewandte Entomologie 103: 153–177.

Srour, M., G. L. D Leite, T. Wappler, T. Tscharntke & C. Scherber (2012): Diversity of ants across an altitudinal gradient in and outside a pine forest in the Harz Mountains, Germany. – Insect Science [https://doi.org/10.1111/j.1744-7917.2012.01521.x].

Stirling, G. & B. Wilsey (2001): Empirical Relationships between Species Richness, Evenness, and Proportional Diversity. – The American Naturalist 158 (3): 286–299.

Stoutjesdijk, P. & J. J. Barkman (1992): Microclimate, Vegetation and Fauna. – Opulus Press, Knivsta, Sweden: 216 pp.

Szymura, T., M. Szymura & A. Maciol (2014): Bioindication with Ellenberg’s indicator values: A comparison with measured parameters in Central European oak forests– Ecologial Indicators 46: 495–503.

Ticha, K. (2002): Integrity of colonies in Leptothorax crassispinus (Hymenoptera: Formicidae). PhD thesis Charles University Praha: 140 pp.

Tramer, E. J. (1969): Bird species diversity: components of Shannon’s formula. – Ecology 50: 927–929.

Violle, C., D. R. Nemergut, Z. Pu & L. Jiang (2011): Phylogenetic limiting similarity and competitive exclusion. – Ecology Letters [https://doi.org/10.1111/j.1461-0248.2011.01644.x].

Wagner, M., A. Kahmen & H. Schlumprecht (2007): Prediction of herbage yield in grassland: How well do Ellenberg N-values perform? – Applied Vegetational Science 10 (1): 15–24.

Wallisdevries, M. F. & C. A. M. Van Swaay (2006): Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. – Global Change Biology 12: 1620–1626.

Walsh, P. D., P. Hensche & K. A. Abernethy (2004): Logging speeds little red fire ant invasion of Africa. – Biotropica 36: 637–640.

Walter, G. H. (1988): Competitive exclusion, coexistence and community structure. – Acta Biotheoretica 37 (3): 281–313.

Wamelink, G. W. W., V. Joosten & H.F. van Dobben (2002): Validity of Ellenberg indicator values judged from physico-chemical field measurements. – Journal of Vegetation Science 13 (2): 269–278.

Weiher, E. & P. A. Keddy (1999): Relative abundance and evenness patterns along diversity and biomass gradients. – Oikos 87: 355–361.

Wellenstein, G. 1967: Zur Frage der Standortansprüche hügelbauender Waldameisen (Formica rufa-Gruppe). – Zeitschrift für Angewandte Zoologie 54: 139–166.

Whittaker, R. H. (1965): Dominance and diversity in land plant communities. – Science 147: 250–260.

Wiezik, M., Wieziková, A. & M. Svitok (2011): Vegetation structure, ecological stability, and low disturbance regime of abandoned dry grasslands support specific ant assemblages in Central Slovakia. – Tuexenia 31: 301–315.

Wiezik, M., M. Svitok, M, A. Wieziková & M. Dovčiak (2013): Shrub encroachment alters composition and diversity of ant communities in abandoned grasslands of western Carpathians. – Biodiversity Conservation 22: 2305–2320.

Wittman, S. (2014): Impacts of invasive ants on native ant communities (Hymenoptera: Formicidae). – Myrmecological News 19: 111–123.

Winter, U. & A. Buschinger (1986): Genetically mediated queen polymorphism and caste determination in the slave-making ant, Harpagoxenus sublaevis (Hymenoptera: Formicidae). – Entomologia Generalis 11 (3/4): 125–137.

Zettler, J.A., M.D. Taylor, C.R. Allen & T.P. Spira (2004): Consequences of forest clear-cuts for native and nonindigenous ants (Hymenoptera : Formicidae). – Annals of the Entomological Society of America 97: 513–518.

Downloads

Published

2017-04-01

Issue

Section

ARTICLES

How to Cite

The ecology of Central European non-arboreal ants – 37 years of a broad-spectrum analysis under permanent taxonomic control: + Electronic supplement is linked to the online version of the paper . (2017). Soil Organisms, 89(1), 1–69. https://soil-organisms.org/index.php/SO/article/view/83