Addition of polyester in soil affects litter decomposition rates but not microarthropod communities

Authors

DOI:

https://doi.org/10.25674/so92iss2pp109

Keywords:

microplastics, litterbags, bait-lamina strip, Acari, soil organism

Abstract

Microplastics are defined as plastic particles that are <5mm. Manufactured in the production of many commercial products, microplastics have become an environmental threat for many organisms. Microplastics can be highly abundant in soil, and given their size, can interact with soil microarthropods. But how microplastics affect soil-dwelling organisms (mites and collembolans) and their role in ecosystem services such as decomposition is largely unknown. We studied the effects of polypropylene and polyester microfibers of two different lengths (2–3mm and 5–6mm) on microarthropod communities and decomposition rates in a sandy soil. Microplastic addition showed no effects on soil microarthropod communities for the groups Oribatida (abundance and species richness), Prostigmata, Astigmata and Mesostigmata, Collembola, nor other invertebrates present in the soil samples (abundance). The addition of microplastics in the soil did affect litter decomposition rates for litterbags on the soil surface; higher mass loss (i.e. decomposition) was found in polyester treatments compared to control and polypropylene treatments, regardless of the length of the fibers. However, no significant differences were found on feeding rates measured by bait-lamina sticks. Permanova results for microarthropod community structure among treatments were not significant, although non-metric multidimensional scaling analysis (NMDS) found that communities were less similar to one another in polypropylene addition treatments compared to polyester addition and to control treatments. This study is the first to test the effects of microplastics on soil microarthropod communities, and we find no direct negative effects of microplastic addition.

References

Andrady, A. L. (2011): Microplastics in the marine environment. – Marine Pollution Bulletin 62: 1596−1605 [https://doi.org/10.1016/j.marpolbul.2011.05.030].

Arthur, C., J. Baker & H. Bamford (eds) (2009): Proceedings of the International Research Workshop on the occurrence, effects, and fate of microplastic marine debris. – NOAA Technical Memorandum NOS-OR&R-30, Tacoma, WA, USA: 530 pp.

Bayartogtokh, B. & H. Schatz. (2008): Trichoribates and Jugatala (Acari: Oribatida: Ceratozetidae) from the Central and Southern Alps, with notes on their distribution. – Zootaxa 35: 1−35 [https://doi.org/10.11646/zootaxa.1948.1.1].

Bergami, E., Rota, E., Caruso, T., Birarda, G., Vaccari, L., & Corsi, I. (2020). Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biology Letters, 16, 20200093 https://doi.org/http://dx.doi.org/10.1098/rsbl.2020.0093

Bergmann, M., S. Mützel., S. Primpke., M. B. Tekman., J. Trachsel. & G. Gerdts. (2019): White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. – Science Advances 5: eaax1157 [https://doi.org/10.1126/sciadv.aax1157].

Bradford, M. A., B. Berg, D. S. Maynard, W. R. Wieder & S. A. Wood (2016): Understanding the dominant controls on litter decomposition. – Journal of Ecology 104: 229−238 [https://doi.org/10.1111/1365-2745.12507].

Buchanan, J. B. (1971): Pollution by synthetic: fibres oiled birds in Holland. – Marine Pollution Bulletin 2: 23 [https://doi.org/10.1016/0025-326X(71)90136-6].

Cacciari, I., P. Quatrini, G. Zirletta, E. Mincione, V. Vinciguerra, P. Lupattelli & G. G. Sermanni (1993): Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. – Applied and Environmental Microbiology 59: 3695−3700 [https://doi.org/10.1128/aem.59.11.3695-3700.1993].

Cao, D., X. Wang, X. Luo, G. Liu & H. Zheng (2017): Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. – IOP Conference Series: Earth and Environmental Science 61: 012148 [https://doi.org/10.1088/1755-1315/61/1/012148].

Chen, H., Y. Wang, X. Sun, Y. Peng & L. Xiao (2020): Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. – Chemosphere 243: [https://doi.org/10.1016/j.chemosphere.2019.125271].

Clarke, K. R. (1993): Non‐parametric multivariate analyses of changes in community structure. – Australian Journal of Ecology 18: 117−143 [https://doi.org/10.1111/j.1442-9993.1993.tb00438.x].

Cole, M., P. Lindeque, C. Halsband & T. S. Galloway (2011): Microplastics as contaminants in the marine environment: a review. – Marine Pollution Bulletin 62: 2588–2597 [https://doi.org/10.1016/j.marpolbul.2011.09.025].

Colton, J. B., F. D. Knapp & B. R. Burns (1974): Plastic particles in surface waters of the Northwestern Atlantic. – Science 185: 491–497.

de Souza Machado, A. A., C. W. Lau, J. Till, W. Kloas, A. Lehmann, R. Becker & M. C. Rillig (2018b): Impacts of microplastics on the soil biophysical environment. – Environmental Science and Technology 52: 9656−9665 [https://doi.org/10.1021/acs.est.8b02212].

de Souza Machado, A. A., W. Kloas, C. Zarfl, S. Hempel & M. C. Rillig (2018a): Microplastics as an emerging threat to terrestrial ecosystems. – Global Change Biology 24: 1405–1416 [https://doi.org/10.1111/gcb.14020].

Deville, J. C. & G. Saporta (1983): Correspondence analysis, with an extension towards nominal time series. – Journal of Econometrics 22: 169−189 [https://doi.org/10.1016/0304-4076(83)90098-2].

Dioses-Salinas, D. C., C. I. Pizarro-Ortega. & G. E. De-la-Torre. (2020): A methodological approach of the current literature on microplastic contamination in terrestrial environments: Current knowledge and baseline considerations. – The Science of the Total Environment 730: 139164 [https://doi.org/10.1016/j.scitotenv.2020.139164].

Dris, R., J. Gasperi, M. Saad, C. Mirande & B. Tassin (2016): Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? – Marine Pollution Bulletin 104: 290–293 [https://doi.org/10.1016/j.marpolbul.2016.01.006].

Duis, K. & A. Coors (2016): Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. – Environmental Sciences Europe 28: 1–25 [https://doi.org/10.1186/s12302-015-0069-y].

Frias, J. P. G. L. & R. Nash (2019): Microplastics: finding a consensus on the definition. – Marine Pollution Bulletin 138: 145–147 [https://doi.org/10.1016/j.marpolbul.2018.11.022].

Gaylor, M. O., E. Harvey & R. C. Hale (2013): Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE-amended soils. – Environmental Science and Technology 47: 13831–13839 [https://doi.org/10.1021/es403750a].

GESAMP (2015): Sources, fate and effects of microplastics in the marine environment: a global assessment. London, UK: 96 pp.

GESAMP (2016): Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment. – International Maritime Organization, London, UK: 220 pp.

Geyer, R., J. R. Jambeck. & K. L. Law. (2017): Production, use, and fate of all plastics ever made. – Science Advances 3: 25−29. [https://doi.org/10.1126/sciadv.1700782].

Gooch, J. W. (2007): P. – In: Encyclopedic dictionary of polymers. – Springer US, New York, NY: 742.

Hartmann, N. B., T. Hüffer, R. C. Thompson, M. Hassellöv, A. Verschoor, A. E. Daugaard, S. Rist, T. Karlsson, N. Brennholt, M. Cole, M. P. Herrling, M. C. Hess, N. P. Ivleva, A. L. Lusher & M. Wagner (2019): Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. – Environmental Science and Technology 53: 1039−1047 [https://doi.org/10.1021/acs.est.8b05297].

Helling, B., G. Pfeiff & O. Larink (1998): A comparison of feeding activity of collembolan and enchytraeid in laboratory studies using the bait-lamina test. – Applied Soil Ecology 7: 207−212 [https://doi.org/10.1016/S0929-1393(97)00065-6].

Hodson, M. E., C. A. Duffus-Hodson, A. Clark, M. T. Prendergast-Miller & K. L. Thorpe (2017): Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. – Environmental Science and Technology 51: 4714−4721 [https://doi.org/10.1021/acs.est.7b00635].

Horton, A. A., A. Walton., D. J. Spurgeon., E. Lahive. & C. Svendsen. (2017): Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. – Science of the Total Environment 586: 127−141 [https://doi.org/10.1016/j.scitotenv.2017.01.190].

Huerta Lwanga, E., B. Thapa., X. Yang., H. Gertsen., T. Salánki., V. Geissen. & P. Garbeva. (2018): Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. – Science of the Total Environment 624: 753−757 [https://doi.org/10.1016/j.scitotenv.2017.12.144].

Huerta Lwanga, E., H. Gertsen, H. Gooren, P. Peters, T. Salánki, M. van der Ploeg, E. Besseling, A. A. Koelmans & V. Geissen (2016): Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). – Environmental Science and Technology 50: 2685−2691 [https://doi.org/10.1021/acs.est.5b05478].

Huerta Lwanga, E., J. Mendoza Vega, V. Ku Quej, J. de los A. Chi, L. Sanchez del Cid, C. Chi, G. Escalona Segura,

H. Gertsen, T. Salánki, M. van der Ploeg, A. A. Koelmans & V. Geissen (2017): Field evidence for transfer of plastic debris along a terrestrial food chain. – Scientific Reports 7: 1−7 [https://doi.org/10.1038/s41598-017-14588-2].

Ivar do Sul, J. A. & M. F. Costa (2014): The present and future of microplastic pollution in the marine environment. – Environmental Pollution 185: 352–364 [https://doi.org/10.1016/j.envpol.2013.10.036].

Ju, H., D. Zhu & M. Qiao (2019): Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. – Environmental Pollution 247: 890−897 [https://doi.org/10.1016/j.envpol.2019.01.097].

Kim, S. W. & Y. An (2019): Soil microplastics inhibit the movement of springtail species. – Environment International 126: 699−706 [https://doi.org/10.1016/j.envint.2019.02.067].

Kooi, M. & A. A. Koelmans (2019): Simplifying microplastic via continuous probability distributions for size, shape, and density. – Environmental Science and Technology Letters 6: 551−557 [https://doi.org/10.1021/acs.estlett.9b00379].

Krantz, G. W. & D. E. Walter. (2009): A manual of acaroloy. 3rd edn. – Texas Tech University Press, Lubbock, Texas: 816 pp.

Kratz, W. (1998): The bait-lamina test: general aspects, applications and perspectives. – Environmental Science and Pollution Research 5: 94−96 [https://doi.org/10.1007/BF02986394].

Lehmann, A., K. Fitschen & M. C. Rillig (2019): Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. – Soil Systems 3: 21 [https://doi.org/10.3390/soilsystems3010021].

Maaß, S., D. Daphi, A. Lehmann & M. C. Rillig (2017): Transport of microplastics by two collembolan species. – Environmental Pollution 225: 456−459 [https://doi.org/10.1016/j.envpol.2017.03.009].

Mason, S. (2019): Plastics, Plastics Everywhere. – American Scientist 107: 284 [https://doi.org/10.1511/2019.107.5.284].

Mason, S. A., D. Garneau, R. Sutton, Y. Chu, K. Ehmann, J. Barnes, P. Fink, D. Papazissimos & D. L. Rogers (2016): Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. – Environmental Pollution 218: 1045−1054 [https://doi.org/10.1016/j.envpol.2016.08.056].

Nizzetto, L., M. Futter & S. Langaas (2016a): Are agricultural soils dumps for microplastics of urban origin? – Environmental Science and Technology 50: 10777−10779 [https://doi.org/10.1021/acs.est.6b04140].

Nizzetto, L., S. Langaas. & M. Futter. (2016b): Do microplastics spill on to farm soils? – Nature 537: 488

Potapov, A. A., E. E. Semenina, A. Y. Korotkevich, N. A. Kuznetsova & A. V. Tiunov (2016): Connecting taxonomy and ecology: trophic niches of collembolans as related to taxonomic identity and life forms. – Soil Biology and Biochemistry 101: 20−31 [https://doi.org/10.1016/j.soilbio.2016.07.002].

Rillig M. C. & A. Lehmann (2020): Microplastic in terrestrial ecosystems. Science 368: 1430−1431.

Rillig, M. C. (2012): Microplastic in terrestrial ecosystems and the soil? – Environmental Science and Technology 46: 6453−6454 [https://doi.org/10.1021/es302011r].

Rillig, M. C., A. A. de Souza Machado, A. Lehmann & U. Klümper (2019): Evolutionary implications of microplastics for soil biota. – Environmental Chemistry 16: 3−7 [https://doi.org/10.1071/EN18118].

Rillig, M. C., L. Ziersch & S. Hempel (2017): Microplastic transport in soil by earthworms. – Scientific Reports 7: 1−6 [https://doi.org/10.1038/s41598-017-01594-7].

Rodriguez-Seijo, A., J. Lourenço, T. A. P. Rocha-Santos, J. da Costa, A. C. Duarte, H. Vala & R. Pereira (2017): Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. – Environmental Pollution 220: 495−503 [https://doi.org/10.1016/j.envpol.2016.09.092].

Rodríguez-Seijo, A., J. P. da Costa, T. Rocha-Santos, A. C. Duarte & R. Pereira (2018): Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. – Environmental Science and Pollution Research 25: 33599−33610 [https://doi.org/10.1007/s11356-018-3317-z].

Selonen, S., A. Dolar, A. Jemec Kokalj, T. Skalar, L. Parramon Dolcet, R. Hurley & C. A. M. van Gestel (2020): Exploring the impacts of plastics in soil – the effects of polyester textile fibers on soil invertebrates. – Science of the Total Environment 700: 134451 [https://doi.org/10.1016/j.scitotenv.2019.134451].

Seniczak, A., S. Seniczak. & S. Kaczmarek. (2015): Morphology, distribution and ecology of Eupelops curtipilus and Eupelops plicatus (Acari, Oribatida, Phenopelopidae). – International Journal of Acarology 41: 77−95 [https://doi.org/10.1080/01647954.2014.986523].

Shen, M., B. Song., G. Zeng., Y. Zhang., W. Huang., X. Wen. & W. Tang. (2020): Are biodegradable plastics a promising solution to solve the global plastic pollution? – Environmental Pollution 263: 114469 [https://doi.org/10.1016/j.envpol.2020.114469].

Thompson, R. C., C. J. Moore., F. S. vom Saal. & S. H. Swan. (2009): Plastics, the environment and human health: Current consensus and future trends. – Philosophical Transactions of the Royal Society B: Biological Sciences 364: 2153−2166 [https://doi.org/10.1098/rstb.2009.0053].

Thompson, R. C., Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D. McGonigle & A. E. Russel (2004): Lost at sea: where is all the plastic? – Science 304: 838 [https://doi.org/10.1210/jcem-10-10-1361].

van Gestel, C. A. M., M. Kruidenier & M. P. Berg (2003): Suitability of wheat straw decomposition, cotton strip degradation and bait-lamina feeding tests to determine soil invertebrate activity. – Biology and Fertility of Soils 37: 115–123 [https://doi.org/10.1007/s00374-002-0575-0].

Wagner, S., T. Hüffer, P. Klöckner, M. Wehrhahn, T. Hofmann & T. Reemtsma (2018): Tire wear particles in the aquatic environment − a review on generation, analysis, occurrence, fate and effects. – Water Research 139: 83−100 [https://doi.org/10.1016/j.watres.2018.03.051].

Wan, Y., C. Wu, Q. Xue & X. Hui (2019): Effects of plastic contamination on water evaporation and desiccation cracking in soil. – Science of the Total Environment 654: 576−582 [https://doi.org/10.1016/j.scitotenv.2018.11.123].

Wang, Y., U. Naumann, S. T. Wright & D. I. Warton (2012): mvabund − an R package for model-based analysis of multivariate abundance data. – Methods in Ecology and Evolution 3: 471−474 [https://doi.org/10.1111/j.2041-210X.2012.00190.x].

Warton, D. I. (2011): Regularized sandwich estimators for analysis of high-dimensional data using generalized estimating equations. – Biometrics 67: 116−123 [https://doi.org/10.1111/j.1541-0420.2010.01438.x].

Weigmann, G. (2006): Hornmilben (Oribatida) — Die Tierwelt Deutschlands, Teil 76. – Goecke & Evers, 520 pp.

Wright, S. L., R. C. Thompson & T. S. Galloway (2013): The physical impacts of microplastics on marine organisms: a review. – Environmental Pollution 178: 483−492 [https://doi.org/10.1016/j.envpol.2013.02.031].

Zhu, D., Q. Bi, Q. Xiang, Q. Chen, P. Christie, X. Ke, L. Wu & Y. Zhu (2018a): Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. – Environmental Pollution 235: 150−154 [https://doi.org/10.1016/j.envpol.2017.12.058].

Zhu, D., Q. L. Chen, X. L. An, X. R. Yang, P. Christie, X. Ke, L. H. Wu & Y. G. Zhu (2018b): Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. – Soil Biology and Biochemistry 116: 302−310 [https://doi.org/10.1016/j.soilbio.2017.10.027].

Downloads

Published

2020-08-01

How to Cite

Barreto, C., Rillig, M., & Lindo, Z. (2020). Addition of polyester in soil affects litter decomposition rates but not microarthropod communities. SOIL ORGANISMS, 92(2), 109–119. https://doi.org/10.25674/so92iss2pp109

Issue

Section

ARTICLES