Assemblages of Collembola across a 130-year chronosequence of beech forest
Keywords:
Springtails, succession, forest management, soil faunaAbstract
Although microarthropods dominate forest floor faunas in both diversity and abundance, long-term aspects of forest cycles have been widely neglected in soil ecological research in the past. We studied which modifications occurred within collembolan assemblages during a typical beech forest cycle from the north-western part of France. We selected 16 sites representative for four age-classes: 15-year, 65-year, 90-year and 130-year-old stands. Strongly significant effects of the factor ‘age class’ reflect increasing collembolan abundance, biomass and mean species richness throughout the ageing of the forest. However, none of the species could be depicted as an indicator for a specific age-class. Nevertheless, shifts in the relative abundances of dominant or subdominant species were responsible for significant differences between communities of the four successional stages. Our results differ from previous studies, highlighting on the one hand the multiplicity of factors acting on soil invertebrates, and on the other hand the need for forest management aiming at combining productivity and biodiversity
conservation to adapt to regional differences in tree species, soil, substrate and climatic conditions.
Downloads
References
Addison, J. A., V. G. Marshall & J. A. Trofymow (1998): Soil microarthropod abundance and species richness in successional Douglas-fir forests. – Northwest science 72: 96–97.
Addison, J. A., J. A. Trofymow & V. G. Marshall (2003): Abundance, species diversity, and community structure of Collembola in successional coastal temperate forests on Vancouver Island, Canada. – Applied Soil Ecology 24: 233–246.
Aubert, M., D. Alard & F. Bureau (2003): Diversity of plant assemblages in managed temperate forests: a case study in Normandy (France). – Forest Ecology and Management 175: 321–337.
Bengtsson, J., H. Lundkvist, P. Saetre, B. Sohlenius & B. Solbreck (1998): Effects of organic matter removal on the soil food web: forestry practices meet ecological theory. – Applied Soil Ecology 9: 137–143.
Bengtsson, J., G. S. Nilsson, A. Franc & P. Menozzi (2000): Biodiversity, disturbances, ecosystem function and management of European forests. . – Forest Ecology and Management 132: 39–50.
Brethes, A., J. J. Brun, B. Jabiol, J. Ponge & F. Toutain (1995): CLASSIFICATION OF FOREST HUMUS FORMS – A FRENCH PROPOSAL. – Annales des Sciences Forestieres 52: 535–546.
Carey, A. (1998): Ecological foundations of biodiversity; lessons from natural and managed forests of the Pacific Northwest. – Northwest science 72: 127–133.
Chauvat, M., A. S. Zaitsev, E. Gabriel & V. Wolters (2009): How do soil fauna and soil microbiota respond to beech forest growth? – Current zoology 55: 272–278.
Chauvat, M., A. S. Zaitsev & V. Wolters (2003): Successional changes of Collembola and soil microbiota during forest rotation. – Oecologia 137: 269–276.
Clarke, K. R. (1993): Non-parametric multivariate analysis of changes in community structure. . – Australian Journal of Ecology 18: 117–143.
Durin, L., J.-M. Géhu, A. Noirfalise & N. Sougnez (1967): Les hêtraies atlantiques et leur essaim climatique dans le nord-ouest et l’ouest de la France. – Bulletin de la Société Botanique du Nord de la France 20: 66–89.
FAO (2006): World reference base for soil resources. A framework for international classification, correlation and communication. – Food and Agriculture Organization of the United Nations, Roma: 145 pp.
Fjellberg, A. (1980): Identification keys to Norwegian Collembola. – Norsk Entomologisk Forening, Ås: 152 pp.
Fjellberg, A. (1998): The Collembola of Fennoscandia and Denmark. Part I. Poduromorpha. – Brill Academic Publishers: 184 pp.
Gisin, H. (1960): Collembolenfauna Europas. – Museum d'histoire Naturelle, Genf: 312 pp.
Green, R. N., R. L. Trowbridge & K. Klinka (1993): Towards a taxonomic classification of humus forms. – Forest Science Monograph 29: 1–49.
Hågvar, S. (1982): Collembola in Norwegian coniferous forest soils – I. Relation to plant communities and soil fertility. – Pedobiologia 24: 255–296.
Hammer, O., D. A. T. Harper & P. D. Ryan (2001): PAST: Paleontological Statistics Software Package for Education and Data Analysis. – Palaeontologia Electronica 4: 1–9.
Hooper, D. U., F. S. Chapin III, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge,
M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer & D. A. Wardle (2005): Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. – Ecological Monographs 75: 3–35.
Horwood, J. A. & K. R. Butt (2000): Changes within oribatid mite communities associated with Scots pine regeneration. – Web ecology 1: 76–81.
Huhta, V. (1976): Effects of clear-cutting on numbers, biomass and community respiration of soil invertebrates. – Annales Zoologici Fennici 13: 63–80.
Huhta, V., E. Karppinen, M. Nurminen & A. Valpas (1967): Effect of silvicultural practices upon arthropod, annelid and nematode populations in coniferous forest soil. – Annales Zoologici Fennici 4: 87–143.
Johnston, J. M. & D. Crossley (2002): Forest ecosystem recovery in the southeast US: soil ecology as an essential component of ecosystem management. – Forest Ecology and Management 155: 187–203.
Lanier, L. (1994): Précis de sylviculture. – Ecole national du Génie Rural, des Eaux et Forêts, Nancy: 477 pp.
Magurran, A. E. (1994): Measuring biological Diversity. – Blackwell Publishing, Oxford, U.K.pp.
Malmström, A., T. Persson & K. Ahlstrom (2008): Effects of fire intensity on survival and recovery of soil microarthropods after a clearcut burning. – Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 38: 2465–2475.
Marra, J. L. & R. L. Edmonds (1998): Effects of coarse woody debris and soil depth on the density and diversity of soil invertebrates on clearcut and forested sites on the Olympic Peninsula, Washington. – Environmental Entomology 27: 1111–1124.
Palissa, A. (1964): Insekten - I. Teil Apterygota. – in P. Brohmer, P. Ehrmann & G. Ulmer, (eds): Die Tierwelt Mitteleuropas: 299 pp.
Peck, R. W. & C. G. Niwa (2005): Longer-Term Effects of Selective Thinning on Microarthropod Communities in a Late-Successional Coniferous Forest. – Environmental Entomology 34: 646–655.
Persson, T. & U. Lohm (1977): Energetical Significance of the Annelids and Arthropods in a Swedish Grassland Soil. – Ecological Bulletin 23: 218.
Petersen, H. (1975): Estimation of dry weight, fresh weight, and calorific content of various Collembolan species. – Pedobiologia 15: 222–243.
Pflug, A. (2001): Determinants of soil community structure and function in european coniferous forests with particular emphasis on Collembola. PhD. – Justus-Liebig-University, Giessenpp.
Pickett, S. T. A. (1989): Space-for-time substitution as an alternative to long-term studies. – In: G. E. Likens, (ed): Long-term studies in ecology. – Springer Verlag, New York: 110–135.
Pomorski, R. J. (1998): Onychiurinae of Poland (Collembola: Onychiuridae). – Genus. – International Journal of Invertebrate Taxonomy (Supplement): 201.
Ponge, J. F., P. Arpin & G. Vannier (1993): Collembolan response to experimental perturbations of litter supply in a temperate forest ecosystem. – European Journal of Soil Biology 29: 141–153.
Potapov, M. (2001): Synopses on Palaearctic Collembola, Part 3. Isotomidae. – Abhandlungen und Berichte des Naturkundemuseums Görlitz Görlitz.
Salamon, J.-A., S. Scheu & M. Schaefer (2008): The Collembola community of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. – Pedobiologia 51: 385.
Salmon, S., L. Frizzera & S. Camaret (2008): Linking forest dynamics to richness and assemblage of soil zoological groups and to soil mineralization processes. – Forest Ecology and Management 256: 1612–1623.
Salmon, S., J. Mantel, L. Frizzera & A. Zanella (2006): Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. – Forest Ecology and Management 237: 47–56.
Schulze, E.-D., P. Högberg, H. van Oene, T. Persson, A. F. Harrison, D. Read, A. Kjøller & G. Matteucci (2000): Interactions between the carbon- and nitrogen cycle and the role of biodiversity: A synopsis of a study along a north-south transect through Europe. – In: E.-D. Schulze, (ed): Carbon and Nitrogen Cycling in Forest Ecosystems. – Springer, Heidelberg: 468–491.
Siira-Pietikainen, A. & J. Haimi (2009): Changes in soil fauna 10 years after forest harvestings: Comparison between clear felling and green-tree retention methods. – Forest Ecology and Management 258: 332–338.
Siira-Pietikäinen, A., J. Pietikainen, H. Fritze & J. Haimi (2001): Short-term responses of soil decomposer communities to forest management: clear felling versus alternative forest harvesting methods. – Canadian Journal of Forest Research 31: 88–99.
Smith, B. & J. B. Wilson (1996): A consumer’s guide to evenness measures. – Oikos 76: 70–82.
Sterzynska, M. (1995): changes in the community structure of collembola during secondary processes of succession in the pine forest. – Polskie Pismo Entomologiczne 64: 229–232.
Tanaka, M. (1970): Ecological studies on communities of soil Collembola in Mt. Sobo, southwest Japan. – Japanese Journal of Ecology 20: 102–110.
Thomas, P. A. & J. R. Packham (2007): Ecology of woodlands and forests – description, dynamics and diversity. – Cambridge University Press, Cambridgepp.
Trap, J., K. Laval, M. Akpa-Vinceslas, C. Gangneux, F. Bureau, T. Decaëns & M. Aubert (2011): Humus macro-morphology and soil microbial community changes along a 130-yr-old Fagus sylvatica chronosequence. – Soil Biology and Biochemistry 43: 1553–1562.
Wallwork, J. A. (1976): The Distribution and Diversity of Soil Fauna. – Academic Press, New York: 355 pp.
Zimdars, B. & W. Dunger (1994): Synopses on Palaearctic Collembola, Part 1. Tullbergiinae Bagnall, 1935. – Abhandlungen und Berichte des Naturkundemuseums Görlitz 68: 1–71.
Downloads
Published
Issue
Section
License
All articles on www.soil-organisms.org may be read, copied, distributed, and (in limited quantity) printed for non-commercial, private, scientific purposes.