Assessing a ReviTec Measure to Combat Soil Degradation by studying Acari and Collembola from Ngaoundéré, Adamawa, Cameroon

Authors

  • Dieudonné Djackba Danra University of Ngaoundéré
  • Hartmut Koehler University of Bremen
  • Elias Nchiwan Nukenine University of Ngaoundéré

DOI:

https://doi.org/10.25674/so93iss3id165

Keywords:

Acari, Collembola, Cameroon, soil degradation, rehabilitation, biochar, bioindication, ReviTec

Abstract

Acari and Collembola from a high Guinean savanna and an experimental ReviTec site were studied to assess the efficiency of compost and biochar amendments for the rehabilitation of degraded soil. The research sites are located in Dang (Ngaoundéré, Adamawa, Cameroon), which is subject to four months of dry season. Our study contributes to the suitability of microarthropods as bioindicators of a rehabilitation measure and to the general knowledge of soil mesofauna in dry sub-Sahara Africa savanna. Abundances of soil Acari and Collembola were assessed in four sampling campaigns during the rainy season (May, June, July, August 2017; 0–20 cm depth). Results from explorative sampling campaigns in the same months of 2016 are included to assess year-to-year development (0–10 cm depth). Soil water content, pH, N, C and soil temperature were monitored. Controls were savanna (adjacent to the experimental site) and ReviTec control (part of the experimental site). To assess the effect of compost and biochar soil amendments, we investigated compost + mycorrhiza (cpmy) and compost + biochar + bokashi (cpbcbo). We identified Acari groups (Gamasina, Uropodina, Prostigmata, Oribatida, Astigmata) and Collembola, extracted with a Tullgren-type apparatus.
In the savanna, abundances of up to 23 tsd. Acari and 6 tsd. Collembola per m2 were recorded. The corresponding findings for the compost-amended substrates of the ReviTec site are 228 tsd. Acari and 37 tsd. Collembola per m2 (2017, means of five cores). The abundances increased gradually with the duration of the rainy season and reached their maximum in July/August. Abundances were higher at depths of 0–10 cm than at 10–20 cm, except in May. Abundances in May likely reflect the previous dry season, when animals seem to survive in deeper soil layers. Significantly higher abundances were recorded in the ReviTec substrates than in the control soils. The development of microarthropods indicates effective rehabilitation of ecosystem services of degraded soil after application of ReviTec.

Downloads

Download data is not yet available.

References

Ansley, R. J., T. W. Boutton & J. O. Skjemstad (2006): Soil organic carbon and black carbon storage and dynamics under different fire regimes in temperate mixed-grass savanna: Soil organic carbon and black carbon responses to fire regime. – Global Biogeochemical Cycles 20: 1–11.

Begum, F., R. M. Bajracharya, B. K. Sitaula, S. Sharma, S. Ali, & H. Ali (2014): Seasonal dynamics and land use effect on soil microarthropod communities in the Mid-hills of Nepal. – International Journal of Agronomy and Agricultural Research 5: 114–123.

Block, W. (1970): Micro-arthropods in some Uganda soils. – In: Methods of Study in Soil Ecology: Proceedings of the Paris Symposium: 195–202.

Brabcová, V., M. Nováková, A. Davidová & P. Baldrian (2016): Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. – New Phytologist 210: 1369–1381 [https://doi.org/10.1111/nph.13849].

Bünemann, E. K., G. Bongiorno, Z. Bai, R. E. Creamer, G. D. Deyn, R. D. Goede, L. Fleskens, V. Geissen, T. W. Kuyper, P. Mäder, M. Pulleman, W. Sukkel, W. J. van Groenigen & L. Brussaard (2018): Soil quality – A critical review. – Soil Biology and Biochemistry 120: 105–125 [https://doi.org/10.1016/j.soilbio.2018.01.030].

Callaham, M. A., C. C. Rhoades & L. Heneghan (2008): A Striking Profile : Soil Ecological Knowledge in Restoration Management and Science. – Restoration Ecology 16: 604–607 [https://doi.org/10.1111/j.1526-100X.2008.00490.x].

Carter, M. R., J. B. Sanderson & J. A. Macleod (2004): Influence of compost on the physical properties and organic matter fractions of a fine sandy loam throughout the cycle of a potato rotation. – Canadian Journal of Soil Science 84: 211–219.

Celik, I., I. Ortas & S. Kilic (2004): Effects of compost , mycorrhiza , manure and fertilizer on some physical properties of a Chromoxerert soil. – Soil & Tillage Research 78: 59–67 [https://doi.org/10.1016/j.still.2004.02.012].

Daghighi, E., H. Koehler, R. Kesel & J. Filser ( 2017): Long-term succession of Collembola communities in relation to climate change and vegetation. – Pedobiologia 64: 25–38 [https://doi.org/10.1016/j.pedobi.2017.06.001].

Danra, D. D., E. N. Nukenine & H. Koehler (2018): Soil Gamasina from savanna and ReviTec site of Ngaoundéré (Adamawa , Cameroon ): abundance and species diversity. – Soil Organisms 90: 187–198 [https://doi.org/10.25674/8fsw-6t13].

Danra, D. D. (2014): Soil microarthropods biodiversity and distribution in two experimental sites: the ReviTec sites of Ngaoundere and Maroua-Salak (Cameroon) (Master Thesis). – University of Ngaoundéré, Ngaoundéré, Adamaoua, Cameroon: 2014.

Decaëns, T., J. H. Galvis & E. Amézquita (2001): Propriétés des structures produites par les ingénieurs écologiques à la surface du sol d’une savane colombienne. – Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 324, 465–478.

Detsis, V. (2014): Vertical distribution of Collembola in deciduous forests under mediterranean climatic conditions. – Belgian Journal of Zoology 130: 55–59.

Devarajan, N., J. A. McGarvey, K. Scow, M. S. Jones, S. Lee, S. Samaddar, R. Schmidt, T. D. Tran & D. S. Karp (2021): Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. – Journal of Applied Microbiology 131: 1564–1577 [https://doi.org/10.1111/jam.15054].

Dindal, D. L. (1990): Soil Biology Guide, 2nd ed. – Wiley-Interscience publication, Syracuse, New York.

Djoussi, N. L. R. (2015): Seasonal dynamics of soil microarthropod communities in two experimental sites: an agricultural soil and the ReviTec of Ngaoundere (Cameroon). – Ngaoundéré, Adamaoua, Cameroon.

Dunger, W. (1975): On the delimination of soil microarthropod coenoses in time and space, in: Vanek, J. (Ed.), Progress in Soil Zoology. – Academia, Publishing House of the Czechoslovak Academy of Sciences: 43–49.

Ekebafe, M. O., L. O. Ekebafe & S. O. Ugbesia (2015): Biochar composts and composites. – Science Progress 98: 169–176 [https://doi.org/10.3184/003685015X14301544319061].

Eo, J., K-C. Park & B.-B. Park (2012): Short-term effects of organic waste amendments on soil biota: responses of soil food web under eggplant cultivation. – Soil Research 50: 436–441.

Ermilov, S. G. & H. Koehler (2017): New data on oribatid mites (Acari, Oribatida) of Cameroon: results of the Joint German-Cameroonian scientific expedition (April 2016). – Systematic & Applied Acarology 22: 2233–2244.

Flórián, N., M. Ladányi, A. Ittzés, G. Kröel-Dulay, G. Ónodi, M. Mucsi, T. Szili- Kovács, V. Gergócs, L. Dányi & M. Dombos (2019): Effects of single and repeated drought on soil microarthropods in a semi-arid ecosystem depend more on timing and duration than drought severity. – PLoS One 14: e0219975.

Forbes, M. S., R. J. Raison & J. O. Skjemstad (2006): Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. – Science of The Total Environment 370: 190–206.

Gbarakoro T. N., Okiwelu S. N., Umeozor O. C., & M. A. Badejo (2010): Soil microarthropods in a secondary rainforest in rivers state, nigeria: -i- seasonal variations in species richness, vertical distribution and density in an undisturbed habitat. – Scientia Africana 9: 46–54.

George, P. B. L., A. M. Keith, S. Creer, G. L. Barrett. I. Lebron, B. A. Emmett, D. A. Robinson & D. L. Jones (2017): Evaluation of mesofauna communities as soil quality indicators in a national- level monitoring programme. – Soil Biol. Biochem. 115: 537–546 [https://doi.org/10.1016/j.soilbio.2017.09.022].

Glaser, B., W. Zech & W. I. Woods (2004.): History, Current Knowledge and Future Perspectives of Geoecological Research Concerning the Origin of Amazonian Anthropogenic Dark Earths (Terra Preta). – In: Glaser, B. & W. Woods (Ed.): Amazonian Dark Earths: Explorations in Space and Time. – Springer Berlin Heidelberg, Berlin, Heidelberg: 9–17.

Gopakumar, L. & A. Joseph (2017): Soil microarthropods as indicators of soil quality of tropical home gardens in a village in Kerala, India. Agrofor. – Agroforestry Systems 91:

–450.

Hassan, M. F., F. M. Momen, A. K. Nasr, A. H. Mabrouk & M.M. Ramadan (2017): Development and reproduction of three predatory mites (Acari: Laelapidae and Rhodacaridae) on eggs of Ephestia kuehniella (Lepidoptera: Pyralidae). – Acta Phytopathol. – Acta Phytopathologica et Entomologica Hungarica 52: 97–106.

Hernández, M. I. S., R. Gómez-Álvarez, M. d. C. Rivera-Cruz, J.D. Álvarez-Solís, J. M. Pat-Fernández & C. F. Ortiz-García (2014): The influence of organic fertilizers on the chemical properties of soil and the production of Alpinia purpurata. – Ciencia e Investigacion Agraria 41: 215–224 [https://doi.org/10.4067/S0718-16202014000200008].

Iloba, B. N. & C. F. Odon (2006): Studies on the biodiversity of soil microarthropod and their responses to precipitation regimes. – African Scientist: 7pp.

Iloba, B. N. & T. Ekrakene (2008): Soil micro arthropods recovery rates from 0–5 cm depth within 5 months period following Endosulfan (Organochlorine Pesticide) treatment in designated plots in Benin City, Nigeria. – Journal of Entomology 1: 36–44.

Jien, S., C. Wang, C. Lee & T. Lee (2015): Stabilization of Organic Matter by Biochar Application in Compost-amended Soils with Contrasting pH Values and Textures. – Sustainability 7: 13317–13333 [https://doi.org/10.3390/su71013317].

Jouquet, P., J. Dauber, J. Lagerlöf, P. Lavelle & M. Lepage (2006): Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. – Applied Soil Ecology 32: 153–164.

Karg, W. (1993): Acari (Acarina), Milben, Parasitiformes (Anactinochaeta), Cohors Gamasina Leach, Raubmilben. – In: Die Tierwelt Deutschlands und der angrenzenden Meere, 59. Teil, Gustav Fischer, Jena, Stuttgart, New York: 523 pp.

Kesel R. (2012): Installation of an ecological site for demonstration, lecturing and research at the University of Ngaoundéré, Cameroon. Installation and monitoring report. – Bremen: 16 pp.

Koehler, H., & H. Born (1989): The Influence of Vegetation Structure on the Development of Soil Mesofauna. – Agriculture, Ecosystems & Environment 27: 253–269.

Koehler, H., R. Kesel, A. Ngakou & O. Mambo (2013): Eine komplexe Sache: Kaffeesäcke gegen Bodendegradation und Wüstenausbreitung in Kamerun. – In: TendenZen 19. – Jahrbuch Des Überseemuseums Bremen, Bremen: 41–56.

Koehler, H. & V. Melecis (2010): Long-term observations of soil mesofauna. – In: Müller, F., H. Schubert (Eds): Long-Term Ecological Research. Between Theory and Application. – Springer, Berlin: 203–220.

Koehler, H. & J. Müller (2003): Entwicklung der Biodiversität während einer 20 jährigen Sukzession als Grundlage für Managementmaßnahmen. – Report to BMBF, 241 pp. online available on researchgate.net.

Koehler, H. (2000): Natural regeneration and succession: results from a 13 yrs study with reference to mesofauna and vegetation and implications for management. – Landscape and Urban Planning 51, 123–130.

Koehler, H. (1999): Mesostigmatic mites, in: Paoletti, M.G. (Ed.), The Role of Biodiversity and Bioindication in Assessing Sustainability in European Landscapes. – Agriculture, Ecosystems & Environment: 395–410.

Koehler, H. (1996): Soil animals and bioindication. – In: van Straalen, N.M. & D. A. Krivolutski (Ed.), Bioindicator Systems for Soil Pollution. – Kluwer acad. publ., Dordrecht, the Netherlands: 179–188.

Koehler, H. (1994): A case study on bioindication and its use for the assessment of ecological impact. – In: Donker, M., H. Eijsackers & F. Heimbach (Ed.): Ecotoxicology of Soil Organisms. Lewis, Lewis, Chelsea: 427–444.

Koehler, H. (1992): The use of soil mesofauna for the judgement of chemical impact on ecosystems. – Agriculture, Ecosystems & Environment 40: 193–205.

Koehler, H. (1984) Methodische, ökologische und experimentelle Untersuchungen zur Sukzession der Mesofauna der Abdeckschicht einer Bauschuttdeponie unter besonderer Berücksichtigung der Gamasina (Acari, Parasitiformes). – Universität Bremen, FB2.

Koehler, H., W. Heyser & R. Kesel (2006): The ecological technology ReviTec® in combating degradation: concept, first results, applications. – In: Restoration and stability of ecosystems in arid and semi-arid regions. – Science Press, Beijing: 288–303.

Kuoppamäki, K., H. Setälä & M. Hagner (2021) Nutrient dynamics and development of soil fauna in vegetated roofs with the focus on biochar amendment. – Nature-Based Solut. 1: 100001.

Kuzyakov, Y., I. Bogomolova & B. Glaser (2014): Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. – Soil Biology and Biochemistry 70: 229–236.

Laird, D. A., P. Fleming, D. D. Davis, R. Horton, B. Wang & D. L. Karlen (2010): Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. – Geoderma 3: 443–449 [https://doi.org/10.1016/j.geoderma.2010.05.013].

Lakshmi, G., F. Beggi, C. Menta, N. K. Kumar & P. Jayesh (2021): Dynamics of soil microarthropod populations affected by a combination of extreme climatic events in tropical home gardens of Kerala, India. – Pedobiologia (Jena) 85: 150719.

Lavelle, P., A. Spain, M. Blouin, G. Brown, T. Decaëns, M. Grimaldi, J. J. Jiménez, D. McKey, J. Mathieu, E. Velasquez & A. Zangerlé (2016) Ecosystem Engineers in a Self-organized Soil: A Review of Concepts and Future Research Questions. – Soil Science 181: 91–109.

Lavelle, P. (1983): The soil fauna of tropical savannas: 1. The community structure. – In: Bourlière, F. (Ed.), Ropical Savannas, Ecosystems of the World. – Elsevier, Amsterdam, Oxford, New York:. 477–484.

Lehmann, J., M. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday & D. Crowley (2011): Biochar effects on soil biota – A review. – Soil Biology and Biochemistry 43: 1812–1836.

Lehmann, J. & S. Joseph (2015): Biochar for Environmental Management: Science, Technology and Implementation. – Routledge, London: 928 pp.

Leroy, B. L. M. M., L. Bommele, D. Reheul, M. Moens & S. D. Neve (2007): The application of vegetable , fruit and garden waste ( VFG ) compost in addition to cattle slurry in a silage maize monoculture : Effects on soil fauna and yield. – European Journal of soil Biology 43: 91–100 [https://doi.org/10.1016/j.ejsobi.2006.10.005].

Mando, A., L. Brussaard & L. Stroosnijder (1999): Termite- and mulch-mediated rehabilitation of vegetation on crusted soil in West Africa. Restoration. – Restoration Ecology 7: 33–41.

Manu, M., R. I. Băncilă, C. C. Bîrsan, O. Mountford & M. Onete (2021): Soil mite communities (Acari: Mesostigmata) as indicators of urban ecosystems in Bucharest, Romania. – Scientific reports 11: 1–14.

Mensah, A. K. & K. A. Frimpong (2018): Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. – International Journal of Agronomy: 6837404 [https://doi.org/https://doi.org/10.1155/2018/6837404].

Menta, C. & S. Remelli (2020): Soil Health and Arthropods: From Complex System to Worthwhile Investigation. – Insects, 11: 21 pp. [https://doi.org/doi:10.3390/insects11010054].

Millennium Ecosystem Assessment (2005): Ecosystems and Human Well-being: Synthesis. – Island Press, Washington, DC: 155 pp.

Mohamedova, M. & I. Lecheva (2013): Effect of heavy metals on microarthropod community structure as an indicator of soil ecosystem health. – cientific Papers. Series A. Agronomy LVI: 73–78.

Mohammed, A. M., O. Umeozor & T. Gbarakoro (2017): The Effects of Glyphosate and Multrazine on the Abundance and Diversity of Soil Microarthropods at the University Park, University of Port-Harcourt, Nigeria. – European Journal of Experimental Biology 7: 1–5 [https://doi.org/10.21767/2248-9215.100002].

Mosadoluwa, A. B. & A.O.-A. Buny (2000): Abundance and diversity of soil mites of fragmented habitats in a biosphere reserve in Southern Nigeria. – Pesquisa Agropecuária Brasileira 35: 2121–2128.

Muturi, J. J., J. P. Mbugi, J. M. Mueke, J. Lagerlöf, J. K. Mungátu, G. Nyamasyo & M. Gikungu (2011): Effect of integrated soil fertility management interventions on the abundance and diversity of soil Collembola in Embu and Taita Districts, Kenya. – Tropical and Subtropical Agroecosystems 13: 35–42.

N’Dri, K. J., T. Hance, H. M. André, J. Lagerlöf & E. J. Tondoh (2016): Microarthropod use as bioindicators of the environmental state : case of soil mites (Acari) from Côte d’Ivoire. – Journal of Animal and Plant Sciences 29: 4622–4637.

N’Dri, K. J. & H. M. André (2011): Soil mite densities from central Ivory Coast. – Journal of Animal and Plant Sciences 10: 1283–1299.

Neef, M. (2014): Activity density patterns of macro soil invertebrates on the ReviTec® site in Ngaoundéré, Cameroon (Bachelor Thesis). – University of Bremen, Bremen, Germany.

Okiwelu, S. N., Gbarakoro, T. N., Umeozor, C. O. & A. M. Badejo (2012): Soil Microarthropods in a Secondary Rainforest , Rivers State , Nigeria - IV- The Impact of Oil Pollution on Their Vertical Distribution. –Resources and Environment 2: 14–19 [https://doi.org/10.5923/j.re.20120202.03].

Parisi, V., C. Menta, C. Gardi, C. Jacomini & E. Mozzanica (2005): Microarthropod communities as a tool to assess soil quality and biodiversity : a new approach in Italy. – Agriculture, Ecosystems and Environment 105: 323–333 [https://doi.org/10.1016/j.agee.2004.02.002].

Petersen, H. & M. Luxton (1982): A Comparative Analysis of Soil Fauna Populations and Their Role in Decomposition Processes, quantitative ecology of microfungi and animals in soil and litter. – OIKOS [https://doi.org/10.2307/3544689].

Petter, F. A. & B. E. Madari (2012): Biochar: Potencial ambiental e agronômico em solos de cerrado. – Revista Brasileira de Engenharia Agricola e Ambiental 16: 761–768.

Pflug, A. & V. Wolters (2001): Influence of drought and litter age on Collembola communities. – European Journal of Soil Biology 37: 305–308.

Price, D. W. (1973): Abundance and Vertical Distribution of Microarthropods in the Surface Layers of a California Pine Forest Soil. – Hilgardia 42, 121–148.

Reisser, M. (2016): Pyrogenic Carbon in Soils: A Literature-Based Inventory and a Global Estimation of Its Content in Soil Organic Carbon and Stocks. – Frontiers in Earth Science: 4 pp.

Saiz, G., J. G. Wynn, C. M. Wurster, I. Goodrick, P. N. Nelson & M. I. Bird (2015): Pyrogenic carbon from tropical savanna burning: production and stable isotope composition. – Biogeosciences 12: 1849– 1863 [https://doi.org/10.5194/bg-12-1849-2015].

Sanchez, S. P., R. Courtney & O. Schmidt (2021): Soil Meso‐and Macrofauna Indicators of Restoration Success in Rehabilitated Mine Sites. – Handbook of Ecological and Ecosystem Engineering: 67–94.

Sarwar, G., H. Schmeisky, N. Hussain, S. Muhammad, M. Ibrahim & E. Safdar (2008): Improvement of soil physical and chemical properties with compost application in rice-wheat cropping system. – Pakistan Journal of Botany 40: 275–282.

Schnee, L., S., H. Koehler, A. Ngakou & T. Eickhorst (2021): Long-term impact of single biochar and compost application on soil aggregation. – IOP IOP Conference Series: Earth and Environmental Science 264: 012160 [https://doi.org/10.1088/1755-1315/648/1/012160].

Schneider, K. & M. Maraun (2009): Top-down control of soil microarthropods – Evidence from a laboratory experiment. – Soil Biology and Biochemistry 41: 170–175.

Scholes, J. R. & H. B. Walker (1993): Nylsvley in and African savanna context. – In: An African Savanna: Sythesis of the Nylsvley Study. – Cambridge University Press, Cambridge-New York-Melbourne: 1–33.

Sharma, N. & H. Paewez (2017): Seasonal Dynamics and Land use Effect on Soil Microarthropod Communities in the Northern Indian State of Uttar Pradesh ( India ). – International Journal of Applied Agricultural Research 3: 371–379.

Sheikh, A. A., G. M. Lone, N. Z. Rehman, A. T. Bhat, A. M. Sofi, M., A. Bhat & U.S. Nabi (2017): Vertical distribution of soil arthropods in apple ecosystem of Kashmir. – Journal of Entomology and Zoology Studies 5: 843–846.

Siedt, M., A. Schäffer, K. E. C. Smith, M. Nabel, M. Roß-Nickoll & J. T. van Dongen (2021): Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. – Science of The Total Environment 751: 14 pp.

Staffeldt, S. (2014): Distribution patterns of ant and termite structures on the ReviTec®-Site in Ngaoundéré, Cameroon (Bachelor Thesis). University of Bremen, Bremen, Germany.

Tchotsoua, M. & B. Gonne (2010) : Des crises socioéconomiques aux crises environnementales sur les Hautes Terres de l’ Adamaoua, Cameroun. – In: Seiny-Boukar, L & P. Boumard (Ed.): Savanes Africaines En Développement: Innover Pour Durer. – Cirad, Garoua, Cameroun: 9 pp.

Todria, N., M. Murvanidze, & L. Mumladze (2021): Oribatid (Acari: Oribatida) diversity in natural and altered open arid ecosystems of South-Eastern Caucasus. – Pedobiologia 87: 150750.

UNCBD Guidelines (2004): The Ecosystem Approach, Montreal: Secretariat of the Convention on Biological Diversity: 50 pp.

UNCCD (1994): Elaboration of an international convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa. Retrieved from http://www.unccd.int/Lists/SiteDocumentLibrary/conventionText/conv-eng.pdf

Urhan, R., Y. Katılmış & A. Ö. Kahveci (2008): Vertical distribution of soil mites (Acari) in Dalaman (Muğla Prov.-Turkey). – Munis Entomology & Zoology 3: 333–341.

Uthappa, A. R. & A. S. Devakumar (2021): Seasonal diversity of soil fauna in semi-arid regions of Karnataka. – Journal of Entomology and Zoology Studies 9: 461–468.

Valarini, P. J., G. Curaqueo, A. Seguel, K. Manzano, R. Rubio, P. Cornejo & F. Borie (2009): Effect of compost application on some properties of a volcanic soil from Central South Chile. – Chilean Journal of Agricultural Research 69: 416–425.

van Eekeren, N., E. Jongejans, M. van Agtmaal, Y. Guo, M. van der Velden, C. Versteeg & H. Siepel (2021): Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed. – Agriculture, Ecosystems & Environment 323: 107682.

Vannier, G. (1970) : Réactions des microarthropodes aux variations de l’état hydrique du sol: techniques relatives à l’extraction des arthropodes du sol. – CNRS, Paris.

Verheijen, F., S. Jeffery, A. C. Bastos, M. van der Velde & I. Diafas (2009): Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. – Office for the Official Publications of the European Communities, Luxembourg [https://doi.org/10.2788/472].

Vladimirova, N. V., I. I. Marchenko, I. P. Belanov & T. A. Novgorodova (2021): Communities of Soil Microarthropods (Acari, Collembola) at Ash Dumps of a Combined Heat and Power Plant at Different Degrees of Conservation. – Contemporary Problems of Ecology 14: 79–89.

Wale, M. & S. Yesuf (2021): Abundance and diversity of soil arthropods in disturbed and undisturbed ecosystem in Western Amhara, Ethiopia. – International Journal of Tropical Insects Science: 1–15.

Warnock, D. D., J. Lehmann, T. W. Kuyper & M. C. Rillig (2007): Mycorrhizal responses to biochar in soil – concepts and mechanisms. – Plant and Soil 300: 9–20 [https://doi.org/10.1007/s11104-007-9391-5].

Wehner, K., S. Scheu & M. Maraun (2014): Resource Availability as Driving Factor of the Reproductive Mode in Soil Microarthropods (Acari, Oribatida). – PLoS One 9,:e104243.

Whitford, W. G. & L. W. Parker (1989): Contributions of soil fauna to decomposition and mineralization processes in semiarid and arid ecosystems. – Arid Soil Research and Rehabilitation 3: 199–215 [https://doi.org/https://doi.org/10.1080/15324988909381199].

Zaman, I., M. Gellhaar, J. Dede, H. Koehler & A. Foerster (2016): Design and evaluation of MoleNet for wireless underground sensor networks. – In: 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops). – IEEE, 145–147.

Downloads

Published

2021-12-01

Issue

Section

ARTICLES

How to Cite

Danra, D. D. ., Koehler, H., & Nukenine, E. N. (2021). Assessing a ReviTec Measure to Combat Soil Degradation by studying Acari and Collembola from Ngaoundéré, Adamawa, Cameroon. Soil Organisms, 93(3), 161–180. https://doi.org/10.25674/so93iss3id165