Effect of three different land use types on the temporal dynamics of microarthropod abundance in the high Guinean savanna of Ngaoundéré (Adamawa, Cameroon)


  • Léa Rosine Djoussi Nde University of Ngaoundéré
  • Elias Nchiwan Nukenine University of Ngaoundéré
  • Hartmut Koehler University of Bremen, UFT Centre for Environmental Research and Sustainable Technology




Acari, Collembola, dead organic matter, NPK fertilizer, maize


Soil degradation and desertification negatively affect agricultural productivity. It affects 46 % of Africa’s land area, where agriculture sustains over 50 % of the economy in many countries. Microarthropod communities’ abundance and composition are important components for soil health and quality assessment. Unfortunately, there is a dearth of information on microarthropods in central Africa in general and Cameroon in particular. We, thus, evaluated the population dynamics of Acari and Collembola as influenced by season, maize cultivation and fertilization in the high Guinean savanna agro-ecological zone (HGSAZ) of Cameroon. The abundances of Acari groups (Oribatida, Gamasina, Uropodina, Prostigmata, Astigmata) and Collembola were recorded. They were extracted from a field trial consisting of three plots of maize and one savanna plot that was established at Dang (Ngaoundéré 3, Adamawa region) in May of 2017 and 2018. The first plot received dead organic matter (DOM) while the second was treated with chemical fertilizer (NPK 20:10:10 at the rate of 8.75g/m2). The third plot received no external input and served as a control. The adjacent grassy savanna was the out-of-field control. Results revealed that microarthropods were more abundant in the rainy than dry season. Overall, abundances of 16 tsd. ind./m2 for Acari and 8 tsd. ind./m2 for Collembola were recorded in the savanna control. In the experimental field with maize cultivation, the highest abundances of Acari (20 tsd. ind./m2) and Collembola (7 tsd. ind./m2) were recorded in the plot that received dead organic matter (DOM), while the control plot without DOM (10 tsd. ind./m2 for Acari and 2 tsd. ind./m2 for Collembola) and the plot with chemical fertilizer (8 tsd. ind./m2 for Acari and 8 tsd. ind./m2 for Collembola) had the lowest abundances. Therefore, application of NPK and removal of DOM from cultivated areas have negative effects on soil microarthropods, and could result in very high costs for farmers to maintain soil fertility. In contrast, mulches are safe, simple and easily accessible to local farmers, promote soil biota and have a positive influence on soil structure and microclimate. Further, knowledge from the present study may contribute to the improvement of soil health and quality and boost agricultural productivity in the HGSAZ of Cameroon.


Agri-Stat (2012): Annuaire des statistiques du secteur agricole campagnes 2009 et 2010. – MINADER Cameroun/Direction des enquêtes et des statistiques agricoles 17: 123.

Aspetti, G. P., R. Boccelli., D. Ampollini, A. A. M. Del Re & E. Capri (2010): Assessment of soil-quality index based on microarthropods in corn cultivation in Northern Italy. –Ecological Indicators 10(2): 129–135 [https://doi.org/10.1016/j.ecolind.2009.03.012].

Bachelier, G. (1971): La vie animale dans les sols. – La Vie Dans Les Sols: Aspects Nouveaux, Études Expérimentales : 1–82.

Badejo, M. A., G. Tian & L. Brussaard (1995): Effect of various mulches on soil microarthropods under a maize crop. – Biology and Fertility of Soils 20: 294–298 [https://doi.org/10.1007/BF00336093].

Bedano, J. C., M. P. Cantú & M. E. Doucet (2005): Abundance of soil mites (arachnida: Acari) in a natural soil of Central Argentina. – Zoological Studies 44(4): 505–512.

Bedano, J. C., M. P. Cantú & M. E. Doucet (2006): Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil. – Applied Soil Ecology 32: 293–304 [https://doi.org/10.1016/j.apsoil.2005.07.009].

Banerjee, S., A. K. Sanyal & A. K. Bhaduri (2009): Studies on Soil Microarthropod Population in Three Different Garden Plots of 24 Parganas. West Bengal-A Preliminary Report. – Records of the Zoological Survey of India 109: 1–9 [https://doi.org/10.26515/rzsi/v109/i4/2009/158971].

Begum, F., R. M. Bajracharya, B. K. Sitaula, S. Sharma, S. Ali & H. Ali (2014): Seasonal dynamics and land use effect on soil microarthropod communities in the Mid-hills of Nepal. – International Journal of Agronomy and Agricultural Research 5(2): 114 –123.

Bengtsson, J., J. Ahnström & A. C. Weibull (2005): The effects of organic agriculture on biodiversity and abundance: A meta-analysis. – Journal of Applied Ecology 42: 261–269 [https://doi.org/10.1111/j.1365-2664.2005.01005.x].

Blevins, R. L., G. W. Thomas, M. S. Smith, W. W. Frye & P. L. Cornelius (1983): Changes in soil properties after 10 years continuous non-tilled and conventionally tilled corn. – Soil and Tillage Research 3: 135–146 [https://doi.org/10.1016/0167-1987(83)90004-1].

Block, W. C. (1970): Micro-arthropods in some Uganda soils. – In: Philippson, J. (ed.), Proceedings of a UNESCO/IBP Symposium on Methods of Study in Soil Ecology. UNESCO, Paris: 195–202.

Bolan, N. S., D. Curtin & D. C. Adriano (2005): Acidity. – In: Hillel, D. (ed.): Encyclopedia of Soils in the Environment. – Elsevier, Oxford: 11–17.

Celik, I., I. Ortas & S. Kilic (2004): Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a chromoxerert soil. – Soil & Tillage Research 78: 59–67 [https://doi.org/10.1016/j.still.2004.02.012].

Chianu, J. N., A. Adesina, P. Sanginga, A. Bationo J. Chianu & N. Sanginga (2008): Structural change in fertilizer procurement method: assessment of impact in Sub-Saharan Africa. – African Journal of Business Management 2: 065–071.

Crossley, D. A., B. R. Mueller & J. C. Perdue (1992): Biodiversity of microarthropods in agricultural soils: relations to processes. – Agriculture, Ecosystems and Environment 40: 37–46 [https://doi.org/10.1016/0167-8809(92)90082-M].

Danra, D. D., E. N. Nukenine & H. Koehler (2018): Soil Gamasina from savanna and ReviTec site of Ngaoundéré (Adamawa, Cameroon): abundance and species diversity. – Soil Organisms 90(3): 187–198 [https://doi.org/10.25674/8fsw-6t13].

Danra, D. D., H. Koehler & E. N. Nukenine (2021): Assessing a ReviTec Measure to Combat Soil Degradation by studying Acari and Collembola from Ngaoundéré, Adamawa, Cameroon. – Soil organisms 93(3): 161–180 [https:// doi.org/10.25674/so93iss3id165].

Demir, Z., O. Yildiz & B. Toprak (2009): Water retention ratios of mulching material consisting primarily of pine bark over different soil types. – Pakistan Journal of Botany 41: 1851–1859.

Didier, K. K., K. K. F. Jean-martial & K. K. Gaston (2018): Soil moisture management and mulch impact on sugarcane yields under irrigated and rainfed conditions in Côte d’Ivoire University Féli. – Journal of Biodiversity and Environmental Sciences 12: 381–390.

Dindal, D. L., (1990): Soil Biology Guide. 2. – Wiley- Interscience publication, Syracuse, New York: 1349.

Djoussi, N. L. R. (2015): Seasonal dynamics of soil microarthropod communities in two experimental sites: an agricultural soil and the ReviTec of Ngaoundere (Cameroon). (Master Thesis). – University of Ngaoundéré, Adamaoua, Cameroon.

Dubie, T. R., C. M. Greenwood, C. Godsey. & M. E. Payton (2011): Effects of tillage on soil microarthropods in winter wheat. – Southwestern Entomologist 36(1): 11–20 [https://doi.org/10.3958/059.036.0102].

Emmerson, M., M. B. Morales, J. J. Oñate, P. Batáry, F. Berendse, J. Liira, T. Aavik, I. Guerrero, R. Bommarco, S. Eggers & et al. (2016): How Agricultural Intensification Affects Biodiversity and Ecosystem Services. – Advances in Ecological Research 55: 43–97 [https://doi.org/10.1016/bs.aecr.2016.08.005].

Ermilov, S. G. & H. Koehler (2017): New data on oribatid mites (Acari, Oribatida) of Cameroon: Results of the Joint German-Cameroonian scientific expedition (April 2016). – Systematic and Applied Acarology 22: 2233–2244 [https://doi.org/10.11158/saa.22.12.13].

FIDA (2021): Rapport sur le développement rural 2021 vue d’ensemble. – Fonds international de développement agricole Via Paolo di Dono, 44 - 00142 Rome, Italie: 52.

Gardi, C., C. Menta & V. Parisi (2002): Use of microarthropods as biological indicators of soil quality: the BSQ sinthetic indicator. – In: Options Méditerranéennes, Série A n. 50: 297–304.

Gbarakoro, T. N. & N. Zabbey (2013): Soil Mesofauna Diversity and Responses to Agro-Herbicide Toxicities in Rainforest Zone of the Niger Delta, Nigeria. – Applied Journal of Hygiene 2: 1–7 [https://doi.org/10.5829/idosi.ajh.2013.2.1.81205].

Gergócs, V., N. Flórián, Z. Tóth, T. Szili-Kovács, M. Mucsi & M. Dombos (2022): Crop species and year affect soil-dwelling Collembola and Acari more strongly than fertilisation regime in an arable field. – Applied Soil Ecology 173: 104390 [https://doi.org/10.1016/j.apsoil.2022.104390].

Gruda, N. (2008): The effect of wood fiber mulch on water retention, soil temperature and growth of vegetable plants. – Journal of Sustainable Agriculture 32: 629–643 [https://doi.org/10.1080/10440040802395049].

Guedegbe, T. & T. Sinsin (2020): Is Land Degradation Neutrality in Africa Possible? – In: OCP Policy Brief: 10.

Guinto, D. F., S. Lauga, L. Dauara, E. Walasi & D. Autufuga (2015): SOIL HEALTH ASSESSMENT OF TARO (Colocasia esculenta) FARMS IN SAMOA. – Wright 1963: 1–7.

Gwiazdowicz, D. J., J. Kamczyc & R. Rakowsk (2011): Mesostigmatid mites in four classes of wood decay. – Experimental and Applied Acarology 55: 155–165.

Hågvar, S. (1990): Reactions to soil acidification in microarthropods: Is competition a key factor? – Biology and Fertility of Soils 9(1): 178–181[ https://doi.org/10.1007/BF00335804].

Hedde, M. (2010): Etude de la relation entre la diversité des macro-invertébrés et la dynamique de la matière organique des sols limoneux de Haute-Normandie. – Ecologie, Environnement. These de doctorat, Université de Rouen, France: 209.

Huhta, V. & S. M. Hänninen (2001): Effects of temperature and moisture fluctuations on an experimental soil microarthropod community. – Pedobiologia 45: 279–286 [https://doi.org/10.1078/0031-4056-00085].

IFATI (2022): Manuel en agriculture culture du Maïs. – Institut de formation en agriculture et technologies innovantes arrete ministeriel n o 086 / minefop / sg / dfop / sdgsf / sacd 1. (n.d.): 13.

Iloba, B. N. & T. Ekrakene (2008): Soil micro arthropods recovery rates from 5-10 cm depth within 5 months period following Entozoan (organochlorine pesticide) treatment in designated plots in Benin city, Nigeria. – Journal of Entomology and Nematology 1: 43–49.

Kader, M. A., M. Senge, M. A. Mojid & K. Nakamura (2017): Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. – International Soil and Water Conservation Research 5: 302–308 [https://doi.org/10.1016/j.iswcr.2017.08.001].

Kennedy (1986): Acid soils and acid rain. – Research Studies Press, John Wiley, New York. IR Ed.

Koehler, H. (1996): Soil animals and bioindication. – In: van Straalen, N. M. & D. A. Krivolutski (ed.), Bioindicator Systems for Soil Pollution. – Kluwer acad. publ., Dordrecht, the Netherlands: 179–188.

Koehler, H. (1999): Predatory mites (Gamasina, Mesostigmata). – Agriculture Ecosystems Environment 74: 395–410.

Krantz, G. W. (1978): A Manual of Acarology, 2nd ed. Oregon State University Book Stores, Corvallis, USA: 509.

Lakshmi, G. & A. Joseph (2017): Soil microarthropods as indicators of soil quality of tropical home gardens in a village in Kerala, India. – Agroforestry Systems 91: 439–450 [https://doi.org/10.1007/s10457-016-9941-z].

Lal, R. (2015): Restoring soil quality to mitigate soil degradation. – Sustainability (Switzerland) 7: 5875–5895 [https://doi.org/10.3390/su7055875].

Lükewille, A. & C. Alewell (2018): Acidification. – Encyclopedia of Ecology 2: 233–241 [https://doi.org/10.1016/B978-0-444-63768-0.00251-1].

Manu, M., R. I. Bǎncilǎ & M. Onete (2013): Soil mite communities (Acari: Gamasina) from different ecosystem types from Romania. – Belgian Journal of Zoology 143: 30–41.

Manu, M., R. I. Băncilă, Bîrsan, C. C. O. Mountford & M. Onete (2021): Soil mite communities (Acari: Mesostigmata) as indicators of urban ecosystems in Bucharest, Romania. – Scientific reports 11: 1–14 [https://doi:10.1038/s41598-021-83417-4].

Mensah, A. K. & K. A. Frimpong (2018): Biochar and/ or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. – International Journal of Agronomy 68: 1–8 [https://doi. org/10.1155/2018/6837404].

Menta, C. (2012): Soil Fauna Diversity – Function, Soil Degradation, Biological Indices, Soil Restoration. – Biodiversity Conservation and Utilization in a Diverse World 284 [https://doi.org/http://dx.doi.org/10.5772/51091].

Menta, C., F. D. Conti, F. Lozano, C. Staffilani & F. S. Remelli (2020): Soil arthropod responses in agroecosystem: implications of different management and cropping systems. – Agronomy 10: 982 [https://doi.org/10.3390/agronomy10070982].

Mhlanga, B., L. Ercoli, E. Pellegrino, A. Onofri & C. Thierfelder (2021): The crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa. –Agronomy for Sustainable Development 41: 1–14.

Miller, J. J., J. P. Battigelli & W. D. Willms (2014): Grazing protection influences soil mesofauna in ungrazed and grazed riparian and upland pastures. – Rangeland Ecology & Management 67:429–434.

Mitchell, J., J. E. Dehm & H. G. Dion (1952): The effect of small additions of elemental sulphur on the availability of phosphate fertilizers. – Scientific Agriculture [Ottawa] 32:311–316.

N’Dri, J. K., H. M. André & T. Hance (2011): Soil mite diversity from Ivory Coast. – European Journal of Scientific Research 64: 263–276.

N’Dri, K. J., T. Hance, H. M. Ande, J. Lagerlof & J. E. Tondoh (2016): Microarthropod use as bioindicators of the environmental state: case of soil mites (Acari) from Côte d’Ivoire. –Journal of Animal and Plant Sciences 29(2): 4622–4637.

Nyembo, K. L., S. Y. Useni, M. M. Mpundu, M. D. Bugeme, L. E. Kasongo & L. L. Baboy (2012): Effets des apports des doses variées de fertilisants inorganiques (NPKS et Urée) sur le rendement et la rentabilité économique de nouvelles variétés de Zea mays L. à Lubumbashi, Sud Est de la RD Congo. – Journal of Applied Biosciences 59: 4286–4296.

Okiwelu, S., N. T. Gbarakoro, O. C. Umeozor & M. A. Badejo (2012): Soil Microarthropods in a Secondary Rainforest, Rivers State, Nigeria - IV - The Impact of Oil Pollution on Their Vertical Distribution. – Resources and Environment 2: 14–19 [https://doi.org/10.5923/j.re.20120202.03].

Peredo, S. F. P., P. Z. Esperanza, V. C. Marcela & P. B. S. Claudia (2009): Edaphic mesofauna community structure in organic and conventional management of cranberry (Vaccinium sp.) plantations: An agroecological approach. – Revista de La Ciencia Del Suelo y Nutricion Vegetal 9:236–244 [https://doi.org/10.4067/S0718-27912009000300006].

Pflug, A. & V. Wolters (2001): Influence of drought and litter age on Collembola communities. – European Journal of Soil Biology 37: 305–308. [https://doi.org/10.1016/S1164-5563 (01)01101-3].

Rico Hernández, J. R., J. Navarro Pedreño & I. Gómez Lucas (2016): Avaliação de resíduos de plantas utilizadas como cobertura morta (“mulch”) sobre a retenção de umidade do solo. – Spanish Journal of Soil Science 6(2): 133–144. [https://doi.org/10.3232/SJSS.2016.V6.N2.05].

Roy, A. (2006): Africa Fertilizer Crisis: Summit Background and Process. Presented at the – Technical Session: High-level dialogue, Africa Fertilizer summit, Abuja, Nigeria, June 9th.

Schnee, L. S., H. Koehler, A. Ngakou & T. Eickhorst (2021): Long-term impact of single biochar and compost application on soil aggregation. – IOP IOP Conference Series: Earth and Environmental Science 264: 012160 [https://doi.org/10.1088/1755-1315/648/1/012160].

Seastedt,T.R. & D.A. Crossley (1981): Microarthropod response following cable logging and clear-cutting in the southern Appalachians. Ecology 62: 126–135.

Shakir, M. M. & S. Ahmed (2014): Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan. – International Journal of Biometeorology 59: 605–616 [https://doi.org/10.1007/s00484-014-0874-9].

Sharma, N. & H. Paewez (2017): Seasonal Dynamics and Land use Effect on Soil Microarthropod Communities in the Northern Indian State of Uttar Pradesh (India). – International Journal of Applied Agricultural Research 3: 371–379.

Sheikh, A. A., N. Rehman, T. A. Bhat, M. A. Sofi, M. A. Bhat, S. Un Nabi, Aijaz, C., A. Sheikh, G. Lone & A. Sofi (2017):Vertical distribution of soil arthropods in apple ecosystem of Kashmir. – Journal of Entomology and Zoology Studies JEZS 843: 843–846.

Souhir, M. (2019): The Agriculture in Africa 2019. – Africa-2019-special-report [https://oxfordbusinessgroup.com/blog/souhir-mzali/focus-reports/agriculture].

UNCCD (1994): Elaboration of an international convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa. – A/AC.241/27: 58.

Valarini, P. J., G. Curaqueo, A. Seguel, K. Manzano, R. Rubio, P. Cornejo & F. Borie (2009): Effect of compost application on some properties of a volcanic soil from Central South Chile. – Chilean Journal of Agricultural Research 69: 416–425.

Wang, S., Y. Tan, H. Fan, H. Ruan & A. Zheng (2015): Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. – Applied Soil Ecology 89: 69–75 [https://doi.org/10.1016/j.apsoil.2015.01.004].

World Bank (2020): Reversals of fortune. Poverty and shared prosperity 2020. – Washington, DC: 201.

Zingore, S., J. Mutegi, B. Agesa, L. Tamene & J. Kihara (2010): Soil Degradation in Sub-Saharan Africa and Crop Production Options for Soil Rehabilitation. – Better Crops with Plant Food 99: 24–26.




How to Cite

Djoussi Nde, L. R., Nchiwan Nukenine, E., & Koehler, H. (2023). Effect of three different land use types on the temporal dynamics of microarthropod abundance in the high Guinean savanna of Ngaoundéré (Adamawa, Cameroon). SOIL ORGANISMS, 95(1), 75–94. https://doi.org/10.25674/so95iss1id201