Occurrence of collembolan fauna in mofette fields (natural carbondioxide springs) of the Czech Republic

Authors

  • David J. Russell Senckenberg Museum of Natural History Görlitz
  • Hans-Jürgen Schulz Senckenberg Museum of Natural History Görlitz
  • Karin Hohberg Senckenberg Museum of Natural History Görlitz
  • Hardy Pfanz University of Duisburg-Essen

Keywords:

Collembola, soil CO2, mofette fields, natural carbon-dioxide springs, extreme habitats

Abstract

Mofette fields are naturally occurring, cold, volcanic gas vents that emit geogenic CO2 through surface waters or the soil into the atmosphere. Soil CO2 concentrations can reach 100% in the centre of these fields. High ground-level CO2 concentrations can accumulate and become lethal traps, as evidenced by undecomposed vertebrate and invertebrate remains littering the areas. Nonetheless, plant growth is possible, and an adapted, partly azonal vegetation often occurs in mofette fields. The obvious impossibility of above-ground animal life in such fields led to the question of the occurrence of endogeic soil fauna, which are generally considered to be adapted to elevated soil CO2 concentrations. For this reason a series of small pilot studies were undertaken in mofette fields in the north-western Czech Republic to ascertain (1) whether Collembola occur at all at such high soil CO2 concentrations and (2) if so, does a specific collembolan fauna occur analogous to the mofettophilous vegetation of such habitats. Twelve collembolan species in, at times, substantial populations were found even at soil CO2 concentrations approaching 100%. It can be assumed that these species are at least temporarily able to survive the anaerobic conditions. At 20–40% CO2, 13 species were found and 23 species at ‘normal’ CO2 concentrations, so that species richness decreased with increasing soil CO2 concentration. The highest total densities were found at intermediate concentrations. Possibly azonal species (i.e. Tullbergia simplex, Folsomia hissarica) as well as a previously undescribed species (Folsomia mofettophila) were found only at high soil CO2 concentrations. Many species registered at normal soil CO2 concentrations were not found at higher concentrations. The registered species could thus be separated into mofettophilous, mofettotolerant and mofettoxenic species. Interestingly, males of otherwise parthenogenetic Mesaphorura species were regularly found at high soil CO2 concentrations.

Downloads

Download data is not yet available.

References

Bankwitz P., G. Schneider, H. Kämpf & E. Bankwitz (2003): Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). – Journal of Geodynamics 35: 5–32.

Bräuer K., H. Kämpf, G. Strauch & S. M. Weise (2003): Isotopic evidence (3He/4He, 13CO ) of fluid triggered intraplate seismicity. – Journal of Geophysical Research 108: 2070.

Chahartaghi, M., M. Scheu & L. Ruess (2006): Sex ratio and mode of reproduction in Collembola of an oak-beech forest. – Pedobiologia 50: 331–340.

Collins, S. & G. Bell (2006): Evolution of natural algal populations at elevates CO2. – Ecology Letters 9: 129–135.

Cotrufo, M. F., M. J. I. Briones & P. Ineson (1998): Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. – Soil Biology and Biochemistry 30: 1565–1571.

Cotrufo, M. F., A. Raschi, M. Lanini & P. Ineson (1999): Decomposition and nutrient dynamics of Quercus pubescens leaf litter in a naturally enriched CO2 Mediterranean ecosystem. – Functional Ecology 13: 343–351.

Couteaux, M. M. & T. Bolger (2000): Interactions between atmospheric CO2 enrichment and soil fauna. – Plant and Soil 224:123–134.

Couteaux, M. M., C. Kurz, P. Bottner & A. Raschi (1999): Influence of increased atmospheric CO2 concentration on quality of plant material and litter decomposition. – Tree Physiology 19: 301–311.

Drigo, B., G. A. Kowalchuk & J. A. van Veen (2008): Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biology and Fertility of Soils 44: 667–679.

Dunger, W. (1983): Tiere im Boden. – Neue Brehm Bücherei, Wittenberg Lutherstadt: 280 pp.

Dunger, W. & H. J. Fiedler (1997): Methoden der Bodenbiologie (2nd ed.). – Gustav Fischer, Stuttgart New York: 539 pp.

Filser, J. & G. Holscher (1997): Experimental studies on the reactions of Collembola to copper contamination. – Pedobiologia 41: 173–178.

Fjellberg, A. (1998): The Collembola of Fennoscandia and Denmark, Part I: Poduromorpha. – Fauna Entomologica Scandinavica 35: 1–183.

Fjellberg, A. (2007): The Collembola of Fennoscandia and Denmark, Part II: Entomobryomorpha and Symphypleona. – Fauna Entomologica Scandinavica 42: 1–264.

Fountain, M. T., V. K. Brown, A. C. Gange, W. O. C. Symondson & P. J. Murray (2007): The effects of the insecticide chlorpyrifos on spider and Collembola communities. – Pedobiologia 51: 147–158.

Geissler W. H., H. Kämpf, R. Kind, K. Bräuer, K. Klinge, T. Plenefisch, J. Horalek, J. Zednik & V. Nehybka (2005): Seismic structure and location of a CO2 source in the upper mantle of the Western Eger rift, Central Europe. – Tectonics 24: TC 5001.

Gillet, S. & J. F. Ponge (2003): Changes in species assemblages and diets of Collembola along a gradient of metal pollution. – Applied Soil Ecology 22: 127–138.

Hansen, R. A., R. S. Williams, D. C. Degenhardt & D. E. Lincoln, (2001): Non-litter effects of elevated CO2 on forest floor microarthropod abundances. – Plant and Soil 236: 139–144.

Haybach, G. (1971): Zur Collembolenfauna der Pasterzenumrahmung im Glocknergebiet (Hohe Tauern). – Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien 110/111: 7–35.

Kämpf H., W. H. Geissler & K. Bräuer (2007): Combined Gas-geochemical and Receiver Functions Studies on the Vogtland/NW-Bohemia Intraplate Mantle Degassing Field, Central Europe. – In: Ritter, J. R. & U. R. Christensen (eds): Mantle plumes –A multidisciplinary approach. Springer, Berlin Heidelberg New York: 127–158.

Kardol, P., W. N. Reynolds, R. J. Norby & A. T. Classen (2011): Climate change effects on soil microarthropod abundance and community structure: – Applied Soil Ecology 47: 37–44.

Körner, C. & F. Miglietta (1994): Long-term effects of naturally elevated CO2 on Mediterranean grassland and forest trees. – Oecologiea 99: 343–351.

Kuznetzova, N. A. (2009): Communities in extreme natural and anthropogenic conditions: a case study of collembolan taxocoenoses. – Festschrift towards the 75th Anniversary and Laudatio in Honour of Academician Ivanovich Chernov: 441–458.

Lavelle, P. & A. V. Spain (2005): Soil Ecology. – Springer, Dordrecht: 654 pp.

Leps, J. & P. Smilauer (2003): Multivariate Analysis of Ecological Data using CANOCO. – Cambridge University Press, Cambridge: 284 pp.

Maraldo, K., P. H. Krogh, L. van der Linden, B. Christensen, T. N. Mikkelsen, C. Beier & M. Holmstrup, (2010): The counteracting effects of elevated atmospheric CO2 concentrations and drought episodes: Studies of enchytraeid communities in a dry heathland. – Soil Biology & Biochemistry 42: 1958–1966.

Moursi, A. A. (1962): The lethal doses of CO2, N2, NH3 and H2S for soil Arthropoda. Pedobiologia 2: 9–14.

Niklasson, M., H. Petersen & E. D. Parker (2000): Environmental stress and reproductive mode in

Mesaphorura macrochaeta (Tullbergiinae, Collembola). – Pedobiologia 44: 476–488.

Niklaus, P. A., D. Alphei, D. Ebersberger, C. Kampichler, E. Kandeler & D. Tscherko (2003): Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. – Global Change Biology 9: 586–600.

Paoletti E., H. Pfanz & A. Raschi (2005): Pros and cons of natural CO2 springs as experimental sites. – In: Omasa K., I. Nouchi & L. J. De Kok (eds): Plant Responses to Air Pollution and Global Change. Springer, Tokyo Berlin Heidelberg New York: 195–202.

Pfanz, H. (2008): Mofetten – Kalter Atem schlafender Vulkane. – Deutsche Vulkanologische Gesellschaft, Mendig: 85 pp.

Pfanz H., D. Vodnik, C. Wittmann, G. Aschan & A. Raschi (2004): Plants and geothermal CO2 exhalations survival in and adaptation to a high CO2 environment. – In: Esser K, U. Lüttge, J. W. Kadereit & W. Beyschlag (eds): Progress in Botany 65. – Springer, Berlin Heidelberg: 499–538.

Pfanz H., C. Wittmann, D. Vodnik, G. Aschan, F. Batiĉ, B. Turk & I. Maĉek (2007): Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in mofettes. – Environ Exp Botany 61: 41–48.

Potapov, M. (2001): Synopses on Palaearctic Collembola 3. Isotomidae. – Abhandlungen und Berichte des Naturkundemuseums Görlitz 73: 1–603.

Potapov, M. B. & A. B. Babenko 2000: Species of the genus Folsomia (Collembola: Isotomidae) of northern Asia. – European Journal of Entomology 97: 51–74.

Raschi A., F. Miglietta, R. Tognetti & P.R. van Gardingen (1997): Plant responses to elevated CO2. Evidence from natural springs. Cambridge University Press, Cambridge: 288 pp.

Ring, M. C., G. Y. Hernandez & P. C. D. Newton (2000): Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource balance model. – Ecology Letters 3: 475–478.

Rösgen, C., J. Gerdsmeier & H. Greven (1993): Effect of rock salt on the Collembola population of a meadow. – Pedobiologia 37: 107–120.

Ross, D. J., K. R. Tate, P. C. D Newton & H. Clark (2003): Carbon mineralization in an organic soil, with and without added grass litter, from a high-CO2 environment at a carbon dioxide spring. – Soil Biology & Biochemistry 35: 1705–1709.

Rüppel, H. (1953): Physiologische Untersuchungen über die Bedeutung des Ventraltubus und die Atmung der Collembolen. – Zoologische Jahrbücher, Abteilung für allgemeine Zoologie und Physiologie der Tiere 64: 429–598.

Russell, D. J. & A. Griegel (2006): Influence of variable inundation regimes on soil Collembola. – Pedobiologia 50: 165–175.

Schulz, H.-J. & M. B. Potapov (2010): A new species of Folsomia from mofette fields of the Northwest Czechia (Collembola, Isotomidae). – Zootaxa 2553: 60–64.

Selvi, F. (1994): Agrostis canina. L. ssp. Monteluccii Selvi. – Webbia 49: 51–58.

Sticht, C., S. Schrader, A. Giesemann & H.-J. Weigel (2008): Atmospheric CO2 enrichment induces life strategy- and species-specific responses of collembolans in the rhizosphere of sugar beet and winter wheat. – Soil Biology & Biochemistry 40: 1432–1445.

Thibaud, J.-M., H.-J. Schulz & M. M. Gama (2004): Synopses on Palaearctic Collembola 4. Hypogastruridae. – Abhandlungen und Berichte des Naturkundemuseums Görlitz 75: 1–287.

Tosi, L. & V. Parisi (1990): Seira tongiorgii, a new species of Collembola from a Volcanic environment. – Bollettino di Zoologia 34: 277–281.

Turk B., H. Pfanz, D. Vodnik, F. Batiĉ & T. Ŝinkovic (2001): The effects of elevated CO2 in natural CO2 springs on bog rush (Juncus effusus L.) plants. I. Effects on shoot anatomy. – Phyton 42: 13–23.

Vodnik D., H. Pfanz, C. Wittmann, I. Maĉek, D. Kastelec, B. Turk & F. Batiĉ (2002a): Photosynthetic acclimation in plants growing near a carbon dioxide spring. – Phyton 42: 239–244.

Vodnik D., H. Pfanz, I. Maĉek, D. Kastelec, S. Lojen &, F. Batiĉ (2002b): Photosynthesis of cockspur [Echinochloa crus-galli (L.) Beauv.] at sites of naturally elevated CO2 concentration. – Photosynthetica 40: 575–579.

Vodnik D., D. Kastelec, H. Pfanz, I. Maĉek & B. Turk (2006): Small-scale spatial variation in soil CO2 concentration in a natural carbon dioxide spring and related properties at the plant level. – Geoderma 133: 309–319.

Yeates, G. W., P. C. D. Newton & D.J. Ross (1999): Response of soil nematode fauna to naturally elevated CO2 levels influenced by soil pattern. – Nematology 1: 285–293.

Zar, J. H. (1999): Biostatistical Analysis. 4th Edn. – Prentice Hall, London Sydney Toronto: 663 pp.

Zimdars, B. & W. Dunger (1994): Synopses on Palaearctic Collembola 1. Tullbergiinae Bagnall, 1935. – Abhandlungen und Berichte des Naturkundemuseums Görlitz 68: 1–71.

Zinkler, D. (1966): Vergleichende Untersuchungen zur Atmungsphysiologie von Collembolen (Apterygota) und anderen Bodenkleinarthropoden. – Zeitschrift für vergleichende Physiologie 52: 99–144.

Zinkler, D. & J. Platthaus (1996): Tolerance of soil-dwelling Collembola to high carbon dioxide concentrations. – European Journal of Entomology 93: 433–450.

Zinkler, D. & R. Rüssbeck (1986): Ecophysiological adaptations of Collembola to low oxygen concentrations. – In: Dallai, R. (ed.): 2nd International Seminar on Apterygota. – University of Sienna Press, Siena: 123–127.

Downloads

Published

2011-12-01

Issue

Section

ARTICLES

How to Cite

Russell, D. J., Schulz, H.-J., Hohberg, K., & Pfanz, H. (2011). Occurrence of collembolan fauna in mofette fields (natural carbondioxide springs) of the Czech Republic. Soil Organisms, 83(3), 489–505. https://soil-organisms.org/index.php/SO/article/view/266