The unexplored links between soil, soil biodiversity, and soil-related ecosystem services
– This paper is part of the special collection ‘Faktencheck Artenvielfalt’
DOI:
https://doi.org/10.25674/442Keywords:
Natural capital; knowledge gap; society; literature review; GermanyAbstract
Soil and its biotic and abiotic components have a huge impact on human well-being, but, on the other hand, they are often neglected in scientific studies or by policy and society in comparison to other ecosystem components. In this study, we provide an overview of the direct and indirect positive and negative influences of soil and soil biodiversity (SBD) on the supply of regulating, provisioning, and cultural (soil-related) ecosystem services. We selected Germany as an example of a well-funded country for research, but we found only a small collection of described and analyzed interactions between SBD and soil-related ecosystem services considering the huge amount of species in the soil. Positive effects of SBD on soil-related ecosystem services in Germany were especially found for the regulation of soil quality and, therefore, the potentially positive impacts on plant cultivation. In addition, interactions between soil, SBD, and cultural ecosystem services were documented, for example, for physical and emotional interactions, aesthetic, soil as an archive, soil as a habitat for species, and soil for education and science. No publications on national and international level were found, for example, on the negative influence of SBD on the cultural ecosystem services tourism / recreation, spiritual interactions, entertainment, and non-use values which underlines the dominance of positively documented interactions. Even though the analyses of causal interdependencies in the nexus between soil, SBD, and soil-related ecosystem services might be challenging due to its complexity, more comprehensive assessments of this nexus should be encouraged.
Downloads
References
Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services—A global review. Geoderma.
Amelung, W., Blume, H.‑P., Fleige, H., Horn, R., & Kandeler, E. (Eds.). (2018). Bodenorganismen und ihr Lebensraum.: In: W. Amelung, H.-P. Blume, H. Fleige, R. Horn, E. Kandeler, I. Kögel-Knabner, R. Kretzschmar, K. Stahr, B.-M. Wilke (Eds.): Lehrbuch der Bodenkunde. Springer.
Amendt, J., Zissler, A., Lutz, L., Szelecz, I., Habermann, A., & Pittner, S. (2020). Interdisziplinarität in der Forensik. Biologie in Unserer Zeit, 50(1), 58–64. https://doi.org/10.1002/biuz.202010698
Angst, G., Potapov, A., Joly, F.‑X., Angst, Š., Frouz, J., Ganault, P., & Eisenhauer, N [N.] (2024). Conceptualizing soil fauna effects on labile and stabilized soil organic matter. Nature Communications, 15(1), 5005. https://doi.org/10.1038/s41467-024-49240-x
Anthony, M. A., Bender, S. F., & van der Heijden, M. G. A [Marcel G. A.] (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 120(33), e2304663120. https://doi.org/10.1073/pnas.2304663120
Antoine, C. M., & Forrest, J. R. (2021). Nesting habitat of ground‐nesting bees: a review. Ecological Entomology, 46(2), 143–159. https://doi.org/10.1111/een.12986
Baber K., Wesenberg J., Xylander W.E. (2019). Perzeption und Evaluierung von Virtual Reality (VR) – Formaten im Naturkundemuseum. Natur Im Museum(9), 37–39.
Bakker, M. R., Brunner, I., Ashwood, F., Bjarnadottir, B., Bolger, T., Børja, I., Carnol, M., Cudlin, P., Dalsgaard, L., Erktan, A., Godbold, D., Kraigher, H., Meier, I. C., Merino-Martín, L., Motiejūnaitė, J., Mrak, T., Oddsdóttir, E. S., Ostonen, I., Pennanen, T. L., . . . Soudzilovskaia, N. A. (2019). Belowground Biodiversity Relates Positively to Ecosystem Services of European Forests. Frontiers in Forests and Global Change, 2, Article 6. https://doi.org/10.3389/ffgc.2019.00006
Banerjee, S., & van der Heijden, M. G. A. (2023). Soil microbiomes and one health. Nature Reviews. Microbiology, 21(1), 6–20. https://doi.org/10.1038/s41579-022-00779-w
Barber, N. A., & Gorden, N. L. S. (2015). How do belowground organisms influence plant-pollinator interactions? Journal of Plant Ecology, 8(1), 1–11. https://doi.org/10.1093/jpe/rtu012
Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, Maurizio, G., & Ricci, A. (2013). Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296–313. https://doi.org/10.1111/1541-4337.12014
Bender, S. F., & van der Heijden, M. G. A. (2015). Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.12351
Bethwell, C., Burkhard, B., Daedlow, K., Sattler, C., Reckling, M., & Zander, P. (2021). Towards an enhanced indication of provisioning ecosystem services in agro-ecosystems. Environmental Monitoring and Assessment, 193(Suppl 1), 269. https://doi.org/10.1007/s10661-020-08816-y
Blanchart, E., Alain, A., Alegre, J. C., & Duboisset, A. (Eds.). (1999). Effects of earthworms on soil structure and physical properties: In: P. Lavelle, L. Brussaard, P. Hendrix (Eds.): Earthworm management in tropical agroecosystems. CABI Publishing.
Booth A., Sutton A., Papaioannou D. (2012). Systemativ Approaches to a Successful Literature Review.
Brevik, E. C., & Burgess, L. C. (2013). Human contact with plants and soils for health and well-being. In: Heckman, J.R. (Ed.): Soils and Human Health. CRC Press. Boca Raton.
Brevik, E. C., & Sauer, T. J. (2015). The past, present, and future of soils and human health studies. SOIL, 1(1), 35–46. https://doi.org/10.5194/soil-1-35-2015
Brooker, S., Clements, A. C. A., & Bundy, D. A. P. (Eds.). (2006). Global Epidemiology, Ecology and Control of Soil-Transmitted Helminth Infections: In: S. I. Hay, A. Graham, D. J.Rogers (Eds.): Advances in Parasitology. Global Mapping of Infectious Diseases: Methods, Examples and Emerging Applications. Academic Press.
Cahn, L. (2023). Volume 4. Anthropocenes – Human, Inhuman, Posthuman, 4(1). https://doi.org/10.16997/ahip.1435
Cesarz, S., Ciobanu, M., Wright, A. J., Ebeling, A., Vogel, A., Weisser, W. W., & Eisenhauer, N. (2017). Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations. Oecologia, 184(3), 715–728. https://doi.org/10.1007/s00442-017-3893-5
Collins, G., Schneider, C., Boštjančić, L. L., Burkhardt, U., Christian, A., Decker, P., Ebersberger, I., Hohberg, K., Lecompte, O., Merges, D., Muelbaier, H., Romahn, J., Römbke, J., Rutz, C., Schmelz, R., Schmidt, A., Theissinger, K., Veres, R., Lehmitz, R., . . . Bálint, M. (2023). The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Communications Biology, 6(1), 1241. https://doi.org/10.1038/s42003-023-05621-4
Comerford, N. B., Franzluebbers, A. J., Stromberger, M. E., Morris, L., Markewitz, D., & Moore, R. (2013). Assessment and Evaluation of Soil Ecosystem Services. Soil Horizons, 54(3), 0. https://doi.org/10.2136/sh12-10-0028
Corato, U. de (2020). Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere, 13, 100192. https://doi.org/10.1016/j.rhisph.2020.100192
Cortois, R., Schröder‐Georgi, T., Weigelt, A., van der Putten, W. H., & Deyn, G. B. de (2016). Plant–soil feedbacks: role of plant functional group and plant traits. Journal of Ecology, 104(6), 1608–1617. https://doi.org/10.1111/1365-2745.12643
Creamer, R. E., Hannula, S. E., Leeuwen, J. P. V., Stone, D., Rutgers, M., Schmelz, R. M., Ruiter, P. C. de, Hendriksen, N. B., Bolger, T., Bouffaud, M. L., Buee, M., Carvalho, F., Costa, D., Dirilgen, T., Francisco, R., Griffiths, B. S., Griffiths, R., Martin, F., Da Silva, P. M., & … Lemanceau, P. (2016). Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology(97), 112–114. https://doi.org/10.1016/j.apsoil.2015.08.006
Crowder, D. W., & Jabbour, R. (2014). Relationships between biodiversity and biological control in agroecosystems: Current status and future challenges. Biological Control(75), 8–17. https://doi.org/10.1016/j.biocontrol.2013.10.010
Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., Averill, C., & Maynard, D. S. (2019). The global soil community and its influence on biogeochemistry. Science, 365(6455). https://doi.org/10.1126/science.aav0550
Davidson, D. A. (2002). Bioturbation in Old Arable Soils: Quantitative Evidence from Soil Micromorphology. Journal of Archaeological Science, 29(11), 1247–1253. https://doi.org/10.1006/jasc.2001.0755
Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J., & Lavelle, P. (2006). The values of soil animals for conservation biology. European Journal of Soil Biology, 42, S23-S38. https://doi.org/10.1016/j.ejsobi.2006.07.001
Dewitz I., Wenz K., Hüpperling S. & Peters J. (Eds.). (2023). Mooratlas. Daten und Fakten zu nassen Klimaschützern. Ein Kooperationsprojekt von Heinrich-Böll-Stiftung, Bund für Umwelt und Naturschutz Deutschland und der Michael Succow Stiftung, Partner im Greifswald Moor Centrum. Heinrich-Böll-Stiftung.
Dilly, O., Gnaß, A., & Pfeiffer, E.‑M. (2005). Humus accumulation and microbial activities in calcari-epigleyic fluvisols under grassland and forest diked in for 30 years. Soil Biology and Biochemistry, 37(11), 2163–2166. https://doi.org/10.1016/j.soilbio.2005.03.014
Dörfelt, H., Ruske, E., & Kästner, A. (2022). Pilze heute und früher: In: H. Dörfelt, E. Ruske & A. Kästner (Eds.): Die Welt der Pilze. Springer.
Dugan, F. (2008). Fungi, folkways and fairy tales: mushrooms & mildews in stories, remedies & rituals, from Oberon to the Internet. North American Fungi, 23–72. https://doi.org/10.2509/naf2008.003.0074
Ehwald, E. (1964). Entwicklungslinien in der Geschichte der Bodenkunde: Berli (Ed.) 1964 – Albrecht-Thaer-Archiv Band 8. In: D. A. d. L. z. Berli (Ed.), Albrecht-Thaer-Archiv Band 8, Heft 1-3 (pp. 5–36). De Gruyter. https://doi.org/10.1515/9783112653869-003
Eisenhauer, N. (2010). The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53(6), 343–352. https://doi.org/10.1016/j.pedobi.2010.04.003
Eisenhauer, N., Reich, P. B., & Isbell, F. (2012). Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology, 93(10), 2227–2240. https://doi.org/10.1890/11-2266.1
Eisenhauer, N., Frank, K., Weigelt, A., Bartkowski, B., Beugnon, R., Liebal, K., Mahecha, M., Quaas, M., Al‐Halbouni, D., Bastos, A., Bohn, F. J., Brito, M. M. de, Denzler, J., Feilhauer, H., Fischer, R., Fritsche, I., Guimaraes‐Steinicke, C., Hänsel, M., Haun, D. B. M., . . . Quaas, J. (2024). A belowground perspective on the nexus between biodiversity change, climate change, and human well‐being. Journal of Sustainable Agriculture and Environment, 3(2), Article e212108. https://doi.org/10.1002/sae2.12108
Eisenhauer, N., & Scheu, S. (2008). Invasibility of experimental grassland communities: The role of earthworms, plant functional group identity and seed size. Oikos, 117(7), 1026–1036. https://doi.org/10.1111/j.0030-1299.2008.16812.x
Eisenhauer, N., Ristok, C., Guerra, C.A., Tebbe, C.C., Xylander, W., Babin, D., Bartkowski, B., Burkhard, B., Filser, J., Glante, F., Hohberg, K., Kleemann, J., Kolb, S., Lachmann, C., Lehmitz, R., Rillig, M., Römbke, J., Rueß, L., Scheu, S., Scheunemann, N., Steinhoff-Knopp, B., Wellbrock, N. et al. (Ed.). (2024b). Bodenbiodiversität: In: Wirth, C., Bruelheide, H., Farwig, N., Marx, J., Settele, J. (Eds.); Faktencheck Artenvielfalt. Bestandsaufnahme und Perspektiven für den Erhalt der biologischen Vielfalt in Deutschland. Oekom.
European Commission (2006). Communication: Thematic strategy for soil protection. https://eur-lex.europa.eu/EN/legal-content/summary/thematic-strategy-for-soil-protection.html
European Parliament. (2024). REGULATION (EU) 2024/1991 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 24 June 2024 on nature restoration and amending Regulation (EU) 2022/869. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202401991
FAO (2020). State of Knowledge of Soil Biodiversity. Status, challenges and potentialities. Report 2020. https://doi.org/10.4060/cb1928en
Feller, C., Landa, E. R., Toland, A., & Wessolek, G. (2015). Case studies of soil in art. SOIL, 1(2), 543–559. https://doi.org/10.5194/soil-1-543-2015
Ferlian, O., Eisenhauer, N., Aguirrebengoa, M., Camara, M., Ramirez-Rojas, I., Santos, F., Tanalgo, K., & Thakur, M. P. (2018). Invasive earthworms erode soil biodiversity: A meta-analysis. The Journal of Animal Ecology, 87(1), 162–172. https://doi.org/10.1111/1365-2656.12746
Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. https://doi.org/10.1038/nature10947
Fonte, S. J., Hsieh, M., & Mueller, N. D. (2023). Earthworms contribute significantly to global food production. Nature Communications, 14(1), 5713. https://doi.org/10.1038/s41467-023-41286-7
Forey, E., Barot, S., Decaëns, T., Langlois, E., Laossi, K.‑R., Margerie, P., Scheu, S., & Eisenhauer, N. (2011). Importance of earthworm–seed interactions for the composition and structure of plant communities: A review. Acta Oecologica, 37(6), 594–603. https://doi.org/10.1016/j.actao.2011.03.001
Fu, B.‑J., Su, C.‑H., Wei, Y.‑P., Willett, I. R., Lü, Y.‑H., & Liu, G.‑H. (2011). Double counting in ecosystem services valuation: causes and countermeasures. Ecological Research, 26(1), 1–14. https://doi.org/10.1007/s11284-010-0766-3
Gebhard, U. (Ed.). (2020). Angst und Ekel vor Tieren.: Gebhard, U. (Ed.): Kind und Natur. Die Bedeutung der Natur für die psychische Entwicklung. Springer.
Gelbrecht, J., Zak, D., Augustin, J. (2008). PHOSPHOR- UND KOHLENSTOFF-DYNAMIK UND VEGETATIONSENTWICKLUNG IN WIEDERVERNÄSSTEN MOOREN DES PEENETALS IN MECKLENBURG VORPOMMERN. https://www.igb-berlin.de/sites/default/files/media-files/download-files/IGB-Bericht-26.pdf
Graaff, M.‑A. de, Adkins, J., Kardol, P., & Throop, H. L. (2015). A meta-analysis of soil biodiversity impacts on the carbon cycle. SOIL, 1(1), 257–271. https://doi.org/10.5194/soil-1-257-2015
Grant, M. J., & Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information and Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
Haines-Young R. & Potschin M. B. (2018). Common International Classification of Ecosystem Services (CICES) V5.1. Guidance on the Application of the Revised Structure. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf
Hugh-Jones, M., & Blackburn, J. (2009). The ecology of Bacillus anthracis. Molecular Aspects of Medicine, 30(6), 356–367. https://doi.org/10.1016/j.mam.2009.08.003
Hyman, P. (2019). Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals, 12(1). https://doi.org/10.3390/ph12010035
Jochum, M., & Eisenhauer, N. (2022). Out of the dark: Using energy flux to connect above‐ and belowground communities and ecosystem functioning. European Journal of Soil Science, 73(1), Article e13154. https://doi.org/10.1111/ejss.13154
Jónsson, J., Davíðsdóttir, B., & Nikolaidis, N. P. (2017). Valuation of Soil Ecosystem Services. In Advances in Agronomy. Quantifying and Managing Soil Functions in Earth's Critical Zone - Combining Experimentation and Mathematical Modelling (Vol. 142, pp. 353–384). Elsevier. https://doi.org/10.1016/bs.agron.2016.10.011
Jourdan, P. M., Lamberton, P. H. L., Fenwick, A., & Addiss, D. G. (2018). Soil-transmitted helminth infections. Lancet, 391(10117), 252–265. https://doi.org/10.1016/S0140-6736(17)31930-X
Kecinski, M., Keisner, D. K., Messer, K. D., & Schulze, W. D. (2018). Measuring Stigma: The Behavioral Implications of Disgust. Environmental and Resource Economics, 70(1), 131–146. https://doi.org/10.1007/s10640-017-0113-z
Keesstra, S., Sannigrahi, S., López-Vicente, M., Pulido, M., Novara, A., Visser, S., & Kalantari, Z. (2021). The role of soils in regulation and provision of blue and green water. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 376(1834), 20200175. https://doi.org/10.1098/rstb.2020.0175
Klein, A.‑M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings. Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
Köhler, J. M., Beetz, N., Günther, P. M., Möller, F., Schüler, T., & Cao, J. (2020). Microbial community types and signature-like soil bacterial patterns from fortified prehistoric hills of Thuringia (Germany). Community Ecology, 21(2), 107–120. https://doi.org/10.1007/s42974-020-00017-4
Köhler, J. M., Kalensee, F., Cao, J., & Günther, P. M. (2019). Hadesarchaea and other extremophile bacteria from ancient mining areas of the East Harz region (Germany) suggest an ecological long‑term memory of soil. SN Applied Science. https://link.springer.com/content/pdf/10.1007/s42452-019-0874-9.pdf
Köhler, J. M., Kalensee, F., Günther, P. M., Schüler, T., & Cao, J. (2018). The Local Ecological Memory of Soil: Majority and Minority Components of Bacterial Communities in Prehistorical Urns from Schöps (Germany). International Journal of Environmental Research, 12(5), 575–584. https://doi.org/10.1007/s41742-018-0116-9
Kucharzyk, K. (Ed.). (2022). Bodenschutz als Bildungsaufgabe zum Erhalt der Lebensgrundlage.: In: K. Kucharzyk (Ed.): Boden, Schülervorstellungen, Unterricht. Effekte unterschiedlich gestalteter Lernumgebungen auf die Veränderlichkeit. Springer.
Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6, 6707. https://doi.org/10.1038/ncomms7707
Lavorel, S., Locatelli, B., Colloff, M. J., & Bruley, E. (2020). Co-producing ecosystem services for adapting to climate change. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 375(1794), 20190119. https://doi.org/10.1098/rstb.2019.0119
Leimer, S., Oelmann, Y., Eisenhauer, N., Milcu, A., Roscher, C., Scheu, S., Weigelt, A., Wirth, C., & Wilcke, W. (2016). Mechanisms behind plant diversity effects on inorganic and organic N leaching from temperate grassland. Biogeochemistry, 131(3), 339–353. https://doi.org/10.1007/s10533-016-0283-8
Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G., & Moreno, C. R. (2009). Effects of Natural Enemy Biodiversity on the Suppression of Arthropod Herbivores in Terrestrial Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 40(1), 573–592. https://doi.org/10.1146/annurev.ecolsys.110308.120320
Ling, L. L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., Conlon, B. P., Mueller, A., Schäberle, T. F., Hughes, D. E., Epstein, S., Jones, M., Lazarides, L., Steadman, V. A., Cohen, D. R., Felix, C. R., Fetterman, K. A., Millett, W. P., Nitti, A. G., Zullo, A. M., . . . Lewis, K. (2015). A new antibiotic kills pathogens without detectable resistance. Nature, 517(7535), 455–459. https://doi.org/10.1038/nature14098
Manici, L. M., Kelderer, M., Franke-Whittle, I. H., Rühmer, T., Baab, G., Nicoletti, F., Caputo, F., Topp, A., Insam, H., & Naef, A. (2013). Relationship between root-endophytic microbial communities and replant disease in specialized apple growing areas in Europe. Applied Soil Ecology, 72, 207–214. https://doi.org/10.1016/j.apsoil.2013.07.011
Menta, C., & Pinto, S. (2016). Biodiversity and Ecology of Soil Fauna in Relation to Truffle: In: Zambonelli, Iotti et al. (Hg.) 2016 – True Truffle Tuber spp. In A. Zambonelli, M. Iotti, & C. Murat (Eds.), Soil Biology. True Truffle (Tuber spp.) in the World (Vol. 47, pp. 319–331). Springer International Publishing. https://doi.org/10.1007/978-3-319-31436-5_19
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.‑S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., . . . Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
Motiejūnaitė, J., Børja, I., Ostonen, I., Bakker, M. R., Bjarnadottir, B., Brunner, I., Iršėnaitė, R., Mrak, T., Oddsdóttir, E. S., & Lehto, T. (2019). Cultural ecosystem services provided by the biodiversity of forest soils: A European review. Geoderma, 343, 19–30. https://doi.org/10.1016/j.geoderma.2019.02.025
Northfield, T. D., Crowder, D. W., Jabbour, R., & Snyder, W. E. (2013). Natural enemy functional identity, trait-mediated interactions and biological control. In T. Ohgushi, O. Schmitz, & R. D. Holt (Eds.), Trait-Mediated Indirect Interactions (pp. 450–465). Cambridge University Press. https://doi.org/10.1017/CBO9780511736551.029
Oberreich, M., Steinhoff-Knopp, B., Burkhard, B., & Kleemann, J. (2024). The Research Gap between Soil Biodiversity and Soil-Related Cultural Ecosystem Services. Soil Systems, 8(3), 97. https://doi.org/10.3390/soilsystems8030097
Pascual, U., Termansen, M., Hedlund, K., Brussaard, L., Faber, J. H., Foudi, S., Lemanceau, P., & Jørgensen, S. L. (2015). On the value of soil biodiversity and ecosystem services. Ecosystem Services, 15, 11–18. https://doi.org/10.1016/j.ecoser.2015.06.002
Paul, C., Kuhn, K., Steinhoff‐Knopp, B., Weißhuhn, P., & Helming, K. (2021). Towards a standardization of soil‐related ecosystem service assessments. European Journal of Soil Science, 72(4), 1543–1558. https://doi.org/10.1111/ejss.13022
Pepper, I. L., Gerba, C. P., Newby, D. T., & Rice, C. W. (2009). Soil: A Public Health Threat or Savior? Critical Reviews in Environmental Science and Technology, 39(5), 416–432. https://doi.org/10.1080/10643380701664748
Pérez-Moreno, J. (2021). Global perspectives on the ecological, cultural and socioeconomic relevance of wild edible fungi. Studies in Fungi, 6(1), 408–424. https://doi.org/10.5943/sif/6/1/31
Phillips, H. R. P., Beaumelle, L., Eisenhauer, N., Hines, J., & Smith, L. C. (2020). Lessons from the WBF2020: Extrinsic and intrinsic value of soil organisms. Soil Organisms, 92(2), 121–127. https://doi.org/10.25674/so92iss2pp121
Plaas, E., Meyer-Wolfarth, F., Banse, M., Bengtsson, J., Bergmann, H., Faber, J., Potthoff, M., Runge, T., Schrader, S., & Taylor, A. (2019). Towards valuation of biodiversity in agricultural soils: A case for earthworms. Ecological Economics, 159, 291–300. https://doi.org/10.1016/j.ecolecon.2019.02.003
Potschin, M. B., & Haines-Young, R. H. (2011). Ecosystem services. Progress in Physical Geography: Earth and Environment, 35(5), 575–594. https://doi.org/10.1177/0309133311423172
Prud’homme, C., Lécuyer, C., Antoine, P., Moine, O., Hatté, C., Fourel, F., Amiot, R., Martineau, F., & Rousseau, D. D. (2018). d13C signal of earthworm calcite granules: a new proxy for palaeoprecipitation reconstructions during the Last Glacial in Western Europe. Quaternary Science Reviews(179), 158–166.
Prud'homme, C., Moine, O., Mathieu, J., Saulnier‐Copard, S., & Antoine, P. (2019). High‐resolution quantification of earthworm calcite granules from western European loess sequences reveals stadial–interstadial climatic variability during the Last Glacial. Boreas, 48(1), 257–268. https://doi.org/10.1111/bor.12359
Randler, C., Hummel, E., & Wüst-Ackermann, P. (2013). The Influence of Perceived Disgust on Students’ Motivation and Achievement. International Journal of Science Education, 35(17), 2839–2856. https://doi.org/10.1080/09500693.2012.654518
Riesenfeld, C. S., Goodman, R. M., & Handelsman, J. (2004). Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environmental Microbiology, 6(9), 981–989. https://doi.org/10.1111/j.1462-2920.2004.00664.x
Roscher, C., Schumacher, J., Baade, J., Wilcke, W., Gleixner, G., Weisser, W. W., Schmid, B., & Schulze, E.‑D. (2004). The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic and Applied Ecology, 5(2), 107–121. https://doi.org/10.1078/1439-1791-00216
Sánchez-Moreno, S., & Ferris, H. (2007). Suppressive service of the soil food web: Effects of environmental management. Agriculture, Ecosystems & Environment, 119(1-2), 75–87. https://doi.org/10.1016/j.agee.2006.06.012
Schaefer, M., & Filser, J. (2007). The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Applied Soil Ecology, 36(1), 53–62. https://doi.org/10.1016/j.apsoil.2006.11.002
Scherzinger, F., Schädler, M., Reitz, T., Yin, R., Auge, H., Merbach, I., Roscher, C., Harpole, W. S., Blagodatskaya, E., Siebert, J., Ciobanu, M., Marder, F., Eisenhauer, N., & Quaas, M. (2024). Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate. Nature Communications, 15(1), 4930. https://doi.org/10.1038/s41467-024-48830-z
Scheu, S. (2002). The soil food web: structure and perspectives. European Journal of Soil Biology, 38(1), 11–20. https://doi.org/10.1016/S1164-5563(01)01117-7
Schierstaedt, J., Jechalke, S., Nesme, J., Neuhaus, K., Sørensen, S. J., Grosch, R., Smalla, K., & Schikora, A. (2020). Salmonella persistence in soil depends on reciprocal interactions with indigenous microorganisms. Environmental Microbiology, 22(7), 2639–2652. https://doi.org/10.1111/1462-2920.14972
Schrader, S., van Capelle, C., & Meyer‐Wolfarth, F. (2020). Regenwürmer als Partner bei der Bodennutzung. Biologie in Unserer Zeit, 50(3), 192–198. https://doi.org/10.1002/biuz.202010706
Singh, B. K., Yan, Z.‑Z., Whittaker, M., Vargas, R., & Abdelfattah, A. (2023). Soil microbiomes must be explicitly included in One Health policy. Nature Microbiology, 8(8), 1367–1372. https://doi.org/10.1038/s41564-023-01386-y
Sofo, A., Mininni, A. N., & Ricciuti, P. (2020). Soil Macrofauna: A key Factor for Increasing Soil Fertility and Promoting Sustainable Soil Use in Fruit Orchard Agrosystems. Agronomy, 10(4), 456. https://doi.org/10.3390/agronomy10040456
StMLU. (2006). Produzenten und Konsumenten, Zersetzer und Aasfresser, Räuber und Parasiten. Der Boden als Lebensraum.: In: Handreichung "Lernort Boden". Sachinformationen.
Swift, M. J., Izac, A.‑M., & van Noordwijk, M. (2004). Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agriculture, Ecosystems & Environment, 104(1), 113–134. https://doi.org/10.1016/j.agee.2004.01.013
Toland, A., & Wessolek, G. (2009). Merging Horizons—Soil Science and Soil Art: In: Landa, Eds. (Hg.) 2009 – Soil and Culture. In E. R. Landa & Feller, Christian (Eds.), Soil and Culture (pp. 45–66). Springer Netherlands. https://doi.org/10.1007/978-90-481-2960-7_4
Ullrich, J. (2021). Schwarmästhetik - Insekten in der Kunst. https://www.kulturrat.de/themen/nachhaltigkeit-kultur/insekten-kultur/schwarmaesthetik/
UNESCO. (2024). UNESCO Global Geoparks. https://www.unesco.org/en/iggp/geoparks/about
Uprety, Y., Poudel, R. C., Shrestha, K. K., Rajbhandary, S., Tiwari, N. N., Shrestha, U. B., & Asselin, H. (2012). Diversity of use and local knowledge of wild edible plant resources in Nepal. Journal of Ethnobiology and Ethnomedicine, 8, 16. https://doi.org/10.1186/1746-4269-8-16
van der Heijden, M. G. A., Bardgett, R. D., & van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
van der Heijden, M. G. A., & Wagg, C. (2013). Soil microbial diversity and agro-ecosystem functioning. Plant Soil, 363(1-2), 1–5. https://doi.org/10.1007/s11104-012-1545-4
Vries, F. T. de, & Wallenstein, M. D. (2017). Below‐ground connections underlying above‐ground food production: a framework for optimising ecological connections in the rhizosphere. Journal of Ecology, 105(4), 913–920. https://doi.org/10.1111/1365-2745.12783
Wagner, G. U. G. Mythologisches und Kulturgeschichtliches von Pilzen: „Heimat-Pfalz - Das Wissensportal der gesamten Pfalz“ ist ein kostenfreies Bildungsprojekt der Geomart UG. https://www.heimat-pfalz.de/pfalz-kolumne/hans-wagners-naturseite/902-mythologisches-und-kulturgeschichtliches-von-pilzen.html
Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. Nature, 528(7580), 69–76. https://doi.org/10.1038/nature15744
Walther, J. (Ed.). (1935). Einführung in die deutsche Bodenkunde. Julius Springer Verlag.
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science (New York, N.Y.), 304(5677), 1629–1633. https://doi.org/10.1126/science.1094875
Wesenberg J., Baber K. et al. Adventure Soil Life“ – A virtual journey through a hidden world. VIMM Virtual Multimodal Museum. https://www.vi-mm.eu/project/adventure-soil-life-a-virtual-journey-through-an-unknown-world/
Westermann, L., Baber, K., Wesenberg, J. & Xylander, W. E. R. (2018). “Abenteuer Bodenleben” -Virtual Reality (VR) zur digitalen Wissenschaftsvermittlung im Museum.
Wirth, C., Bruelheide, H., Farwig, N., Marx, J. M., & Settele, J. (2024a). Faktencheck Artenvielfalt. Zusammenfassung für die gesellschaftliche Entscheidungsfindung. Oekom Verlag.
Wirth, C., Bruelheide, H., Farwig, N., Marx, J. M., & Settele, J. (2024b). Faktencheck Artenvielfalt. Bestandsaufnahme und Perspektiven für den Erhalt der biologischen Vielfalt in Deutschland. Oekom Verlag. https://doi.org/10.14512/9783987263361
Xylander, W. E. R., & Zumkowski-Xylander, H. (2018). Increasing awareness for soil biodiversity and protection The international touring exhibition “The Thin Skin of the Earth”. SOIL ORGANISMS 90(2). Advance online publication. https://doi.org/10.25674/KKY5-A011
Xylander, W. (2019). Reflexionen zu Kriterien zum Einsatz von Virtual Reality in Naturkundemuseen.
Xylander, W. (2020). Society´s awareness for protection of soils, its biodiversity and function in 2030 – We need a more intrinsic approach. SOIL ORGANISMS 92(3). Advance online publication. https://doi.org/10.25674/so92iss3pp203
Xylander, W. (2024). Mehr Bewusstsein für Bodenbiodiversität - Defizite, Bedarfe, Transferansätze und -formate. Natur Und Landschaft(9/10), 445–451.
Yun, W., & Hall, I. R. (2004). Edible ectomycorrhizal mushrooms: challenges and achievements. Canadian Journal of Botany, 82(8), 1063–1073. https://doi.org/10.1139/b04-051
Zaller, J. G. (2004). Ecology and non‐chemical control of Rumex crispus and R. obtusifolius (Polygonaceae): a review. Weed Research, 44(6), 414–432. https://doi.org/10.1111/j.1365-3180.2004.00416.x
Zaller, J. G., & Saxler, N. (2007). Selective vertical seed transport by earthworms: Implications for the diversity of grassland ecosystems. European Journal of Soil Biology, 43, S86-S91. https://doi.org/10.1016/j.ejsobi.2007.08.010
Zanella, A., Ponge, J.‑F., & Briones, M. J. (2018). Humusica 1, article 8: Terrestrial humus systems and forms – Biological activity and soil aggregates, space-time dynamics. Applied Soil Ecology, 122, 103–137. https://doi.org/10.1016/j.apsoil.2017.07.020
Zucconi, L., Canini, F., Isola, D., & Caneva, G. (2022). Fungi Affecting Wall Paintings of Historical Value: A Worldwide Meta-Analysis of Their Detected Diversity. Applied Sciences, 12(6), 2988. https://doi.org/10.3390/app12062988
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Janina Kleemann, Bastian Steinhoff-Knopp, Nico Eisenhauer, Christian Ristok, Willi E. R. Xylander, Benjamin Burkhard

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.