Soil BON Earthworm - A global initiative on earthworm distribution, traits, and spatiotemporal diversity patterns


  • Pierre Ganault Université de Rouen Normandie; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig University
  • Christian Ristok German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig University
  • Helen R. Phillips Netherlands Institute of Ecology (NIOO-KNAW); Saint Mary’s University; University of Helsinki
  • Mickael Hedde Eco&Sols
  • Yvan Capowiez University of Avignon
  • Nicolas Bottinelli Sorbonne Université; Soils and Fertilizers Research Institute (SFRI)
  • Thibaud Decaëns Université de Montpellier
  • Daniel Marchan Université de Montpellier; Universidad Complutense de Madrid
  • Sylvain Gerard Eco&Sols; Université de Montpellier
  • Jérôme Mathieu Sorbonne Université
  • Anton Potapov Senckenberg Museum for Natural History Görlitz; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; University of Göttingen
  • Erin K Cameron Saint Mary’s University
  • George Brown Embrapa Forestry
  • Marie Bartz Centre for Organic and Regenerative Agriculture
  • Romy Zeiss Université de Rouen Normandie; Leipzig University
  • Yacouba Zi Sorbonne Université
  • Maria Tsiafouli Aristotle University of Thessaloniki
  • David J Russell Senckenberg Museum for Natural History Görlitz
  • Carlos Guerra Leipzig University; Universidade de Coimbra
  • Nico Eisenhauer German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig University



community ecology, ecosystem functioning, functional traits, citizen science, temporal dynamics


Recent research on earthworms has shed light on their global distribution, with high alpha richness in temperate zones and high beta diversity in tropical areas. Climate and agricultural practices, notably plowing and conservation methods, were shown to strongly influence earthworm communities. However, data gaps persist in regions like North Australia, Asia, Russia, and Africa, limiting our understanding of earthworm distribution and their responses to global changes. Understanding changes within earthworm communities is crucial given their profound influence on ecosystem functions such as soil structure, nutrient dynamics, and plant growth. Classifying earthworms into functional groups remains complex, prompting the adoption of a trait-based approach for a more comprehensive classification, but there is no representative global data on earthworm traits. To address these knowledge gaps, the Soil BON Earthworm initiative aims at creating a global community of earthworm experts, standardizing sampling methods and databases, collecting time series data on earthworm communities, and modeling future earthworm distributions under different climate scenarios. The initiative aims to address key questions, such as the dynamic of earthworm communities over time and their response to environmental factors and anthropogenic influences, their impact on ecosystem functioning, and the redefinition of functional groups based on traits. The consortium invites researchers worldwide to contribute to this endeavor and encourages the resampling of study sites, to expand currently limited time series datasets. To facilitate data collection, standardized protocols and data templates are proposed, ensuring data quality and interoperability. Furthermore, the initiative intends to make use of citizen science in expanding observations and improving taxonomic coverage, highlighting platforms like iNaturalist for community engagement. Soil BON Earthworm seeks to unite global expertise and foster collaborative research to address critical gaps in understanding earthworm ecology and its implications for ecosystems at a global scale.


Anderson, J. M., J. S. I. Ingram, International Union of Biological Sciences & International Society of Soil Science (eds) (1993): Tropical soil biology and fertility: a handbook of methods, 2. ed. – CAB International, Wallingford.

Basset, Y., P. T. Butterill, D. A. Donoso, G. P. A. Lamarre, D. Souto-Vilarós, F. Perez, R. Bobadilla, Y. Lopez, J. Alejandro Ramírez Silva & H. Barrios (2023): Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. – Ecological Indicators 150: 110243 []

Betancur-Corredor, B., B. Lang & D. J. Russell (2023): Organic nitrogen fertilization benefits selected soil fauna in global agroecosystems. – Biology and Fertility of Soils 59: 1–16 []

Blouin, M., M. E. Hodson, E. A. Delgado, G. Baker, L. Brussaard, K. R. Butt, J. Dai, L. Dendooven, G. Peres, J. E. Tondoh, D. Cluzeau & J.-J. Brun (2013): A review of earthworm impact on soil function and ecosystem services: Earthworm impact on ecosystem services. – European Journal of Soil Science 64, 161–182 [].

Blowes, S. A., S. R. Supp, L. H. Antão, A. Bates, H. Bruelheide, J. M. Chase, F. Moyes, A. Magurran, B. McGill, I. H. Myers-Smith & et al. (2019): The geography of biodiversity change in marine and terrestrial assemblages. – Science 366: 339–345 [].

Bonfanti, J., M. Hedde, S. Joimel, P. H. Krogh, C. Violle, J. Nahmani & J. Cortet (2018): Intraspecific body size variability in soil organisms at a European scale: Implications for functional biogeography. – Functional Ecology 32: 2562–2570 [].

Bottinelli, N., M. Hedde, P. Jouquet & Y. Capowiez (2020): An explicit definition of earthworm ecological categories – Marcel Bouché’s triangle revisited. – Geoderma 372: 114361 [].

Bottinelli, N. & Y. Capowiez (2021): Earthworm ecological categories are not functional groups. – Biology and Fertility of Soils 57: 329–331 [].

Bouché, M. (1972): Lombriciens de France. – Ecologie et systématique. – INRA, Paris.

Briones, M. J. I. & O. Schmidt (2017): Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. – Global Change Biology 23: 4396–4419. [].

Brown, G. G., S. W. James, C. Csuzdi, E. Lapied, T. Decaëns, J.W. Reynolds, M. Misirlioğlu, M. Stovanić, T. Trakić,

J. Sekulić, H. R. P. Phillips & E. Cameron (2024): A checklist of megadrile earthworm (Annelida: Clitellata) species and subspecies of the world [].

Burkhardt, U., D. J. Russell, P. Decker, M. Döhler, H. Höfer, S. Lesch, S. Rick, J. Römbke, C. Trog, J. Vorwald, E. Wurst & W.E.R. Xylander, (2014): The Edaphobase project of GBIF-Germany—A new online soil-zoological data warehouse. – Applied Soil Ecology 83: 3–12 [].

Cameron, E. K., I. S. Martins, P. Lavelle, J. Mathieu,

L. Tedersoo, F. Gottschall, C. A. Guerra, J. Hines, G. Patoine, J. Siebert & et al. (2018): Global gaps in soil biodiversity data. – Nature Ecology & Evolution 2: 1042–1043 [].

Capowiez, Y., D. Marchán, T. Decaëns, M. Hedde &

N. Bottinelli (2024): Let earthworms be functional - Definition of new functional groups based on their bioturbation behavior. – Soil Biology and Biochemistry 188: 109209 [].

Chandler, M., L. See, C. D. Buesching, J. A. Cousins, C. Gillies, R. W. Kays, C. Newman, H. M. Pereira & P. Tiago (2017): Involving Citizen Scientists in Biodiversity Observation. – In: M. Walters & R. J. Scholes (eds): – The GEO Handbook on Biodiversity Observation Networks. – Springer International Publishing, Cham: 211–237 [].

Coq, S., P. Ganault, G. Le Mer, J. Nahmani, Y. Capowiez, M.-F. Dignac, C. Rumpel & F.-X. Joly (2022): Faeces traits as unifying predictors of detritivore effects on organic matter turnover. – Geoderma 422: 115940 [].

Csuzdi, C. (2012): Earthworm species, a searchable database. – Opuscula Zoologica 43: 97–99 [].

Darwin Core Maintenance Group (2023): Simple Darwin Core. – Biodiversity Information Standards (TDWG) [ (accessed 12.8.23)].

De Palma, A., K. Sanchez-Ortiz, P. A. Martin, A. Chadwick, G. Gilbert, A. E. Bates, L. Börger, S. Contu, S. L. L. Hill & A. Purvis (2018): Challenges With Inferring How Land-Use Affects Terrestrial Biodiversity: Study Design, Time, Space and Synthesis, in: Advances in Ecological Research. – Elsevier 58: 163–199 [].

Decaëns, T., J. J. Jiménez, C. Gioia, G. J. Measey, P. Lavelle (2006): The values of soil animals for conservation biology. – European Journal of Soil Biology 42: S23–S38 [].

Decaëns, T. (2010): Macroecological patterns in soil communities: Soil community macroecology. – Global Ecology and Biogeography 19: 287–302 [].

Decaëns, T., D. Porco, S. W. James, G. G. Brown, V. Chassany, F. Dubs, L. Dupont, E. Lapied, R. Rougerie, J.-P. Rossi & V. Roy (2016): DNA barcoding reveals diversity patterns of earthworm communities in remote tropical forests of French Guiana. – Soil Biology and Biochemistry 92: 171–183 [].

Donaldson, M. R., N. J. Burnett, D. C. Braun, C. D. Suski, S. G. Hinch, S. J. Cooke & J. T. Kerr (2017): Taxonomic bias and international biodiversity conservation research. – FACETS 1: 105–113 [].

Dornelas, M., N. J. Gotelli, B. McGill, H. Shimadzu, F. Moyes, C. Sievers & A. E. Magurran (2014): Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss. – Science 344: 296–299 [].

Edwards, J. L., M. A. Lane & E. S. Nielsen (2000): Interoperability of Biodiversity Databases: Biodiversity Information on Every Desktop. – Science 289: 2312–2314 [].

Eisenhauer, N., W. E. R. Xylander & A. Potapov (2023): Spotlight on the unseen majority - the way to open community-driven publishing for global soil biodiversity. – Soil Organisms 95: 173–177 [].

FAO, I. (2020): State of knowledge of soil biodiversity – Status, challenges and potentialities. Summary for policy makers. – FAO, Rome, Italy [].

Fonte, S. J., M. Hsieh & N. D. Mueller (2023): Earthworms contribute significantly to global food production. – Nature Communications 14: 5713 [].

Fry, E. L., J. R. De Long, L. Álvarez Garrido, N. Alvarez, Y. Carrillo, L. Castañeda?Gómez, M. Chomel, M. Dondini, J. E. Drake, S. Hasegawa & et al. (2019): Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models. – Methods in Ecology and Evolution 10: 146–157 [].

Geisen, S., D. H. Wall & W. H. Van Der Putten (2019): Challenges and Opportunities for Soil Biodiversity in the Anthropocene. – Current Biology 29: R1036–R1044 [].

Gold, M. (2022): ECSA 10 Principles of Citizen Science [].

Greenop, A., B. A. Woodcock, C. L. Outhwaite, C. Carvell, R. F. Pywell, F. K. Edwards, A. C. Johnson & N. J. B. Isaac (2021): Patterns of invertebrate functional diversity highlight the vulnerability of ecosystem services over a 45-year period. – Current Biology 31: 4627-4634.e3 [].

Grime, J. P. (1974): Vegetation classification by reference to strategies. Nature 250: 26–31 [].

Guerra, C. A., A. Heintz-Buschart, J. Sikorski, A. Chatzinotas, N. Guerrero-Ramírez, S. Cesarz, L. Beaumelle, M. C. Rillig, F. T. Maestre, M. Delgado-Baquerizo & et al. (2020): Blind spots in global soil biodiversity and ecosystem function research. – Nature Communications 11: 3870 [].

Guerra, C.A., R. D. Bardgett, L. Caon, T. W. Crowther, M. Delgado-Baquerizo, L. Montanarella, L. M. Navarro, A. Orgiazzi, B. K. Singh, L. Tedersoo & et al. (2021a): Tracking, targeting, and conserving soil biodiversity. – Science 371, 239–241. [].

Guerra, C. A., D. H. Wall & N. Eisenhauer (2021b): Unearthing soil ecological observations. – Soil Organisms 93: 79–81 [].

Gunstone, T., T. Cornelisse, K. Klein, A. Dubey, N. Donley (2021): Pesticides and Soil Invertebrates: A Hazard Assessment. – Frontiers in Environmental Science 9: 643847 [].

Hallmann, C. A., M. Sorg, E. Jongejans, H. Siepel, N. Hofland, H. Schwan, W. Stenmans, A. Müller, H. Sumser, T. Hörren, D. Goulson & H. de Kroon (2017): More than 75 percent decline over 27 years in total flying insect biomass in protected areas. – PLOS ONE 12: e0185809 [].

Hedde, M., O. Blight, M. J. I. Briones, J. Bonfanti, A. Brauman, M. Brondani, I. Calderón Sanou, J. Clause, E. Conti, J. Cortet& et al. (2022): A common framework for developing robust soil fauna classifications. – Geoderma 426: 116073. [].

Hurtt, G. C., L. P. Chini, S. Frolking, R. A. Betts, J. Feddema, G. Fischer, J. P. Fisk, K. Hibbard, R. A. Houghton, A. Janetos & et al. (2011): Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. – Climate Change 109: 117–161 [].

Joimel, S., J. Nahmani, M. Hedde, A. Auclerc, B. Léa, J. Bonfanti, J. Cortet, G. Pierre, F. Maunoury-Danger, P. Benjamin (2021): A large database on functional traits for soil ecologists: BETSI. Presented at the Global Symposium on Soil Biodiversity: 523.

Joly, F.-X., S. Coq, M. Coulis, J.-F. David, S. Hättenschwiler, C.W. Mueller, I. Prater & J.-A. Subke (2020): Detritivore conversion of litter into faeces accelerates organic matter turnover. – Communications Biology 3: 660 [].

Keller, A., M. J. Ankenbrand, H. Bruelheide, S. Dekeyzer, B.J. Enquist, M. B. Erfanian, D. S. Falster, R.V. Gallagher, J. Hammock, J. Kattge & et al. (2023): Ten (mostly) simple rules to future-proof trait data in ecological and evolutionary sciences. – Methods in Ecology and Evolution 14: 444–458 [].

Lang, B., B. Betancur-Corredor & D. J. Russell (2023): Earthworms increase soil mineral nitrogen content – a meta-analysis. – Soil Organisms 95: 1–16 [].

Lavelle, P., J. Mathieu, A. Spain, G. Brown, C. Fragoso, E. Lapied, A. De Aquino, I. Barois, E. Barrios, M. E. Barros, & et al. (2022): Soil macroinvertebrate communities: A world?wide assessment. – Global Ecology and Biogeography 31: 1261–1276 [].

Le Mer, G., N. Bottinelli, M.-F. Dignac, Y. Capowiez, P. Jouquet, A. Mazurier, F. Baudin, L. Caner & C. Rumpel (2022): Exploring the control of earthworm cast macro- and micro-scale features on soil organic carbon mineralization across species and ecological categories. – Geoderma 427: 116151 [].

Lubbers, I. M., K. J. van Groenigen, S. J. Fonte, J. Six, L. Brussaard & J. W. van Groenigen (2013): Greenhouse-gas emissions from soils increased by earthworms. – Nature Climate Change 3: 187–194. [].

Marchán, D. F., T. Decaëns, J. Domínguez & M. Novo (2022): Perspectives in Earthworm Molecular Phylogeny: Recent Advances in Lumbricoidea and Standing Questions. – Diversity 14: 30 [].

Mathieu, J., A. C. Antunes, S. Barot, A. E. Bonato Asato, M. L. C. Bartz, G. G. Brown, I. Calderon-Sanou, E. Conti, J. Cortet, S. J. Decaëns & et al. (2022): sOilFauna - a global synthesis effort on the drivers of soil macrofauna communities and functioning: WORKSHOP REPORT. – Soil Organisms 94: 111–126 [].

Mathieu, J., M. Bartz, G. G. Brown, E. Cameron, T. Decaëns, L. Dupont, D. F. Marchan, C. Fragoso, P. Ganault, A. Geraskina & et al. (2023): Collaboration call: Building an image collection for computer vision identification of worldwide earthworm species in iNaturalist [].

Misirlioğlu, M., J. W. Reynolds, M. Stojanović, T. Trakić, J. Sekulić, S. W. James, C. Csuzdi, T. Decaëns, E. Lapied, H. R. P. Phillips, E. K. Cameron & G. G. Brown (2023): Earthworms (Clitellata, Megadrili) of the world: an updated checklist of valid species and families, with notes on their distribution. – Zootaxa 5255: 417–438 [].

Moretti, M., A. T. C. Dias, F. Bello, F. Altermatt, S. L. Chown, F. M. Azcárate, J. R. Bell, B. Fournier, M. Hedde, J. Hortal, S. Ibanez & et al. (2017): Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. – Functional Ecology 31: 558–567 [].

Müller, J., T. Hothorn, Y. Yuan, S. Seibold, O. Mitesser, J. Rothacher, J. Freund, C. Wild, M. Wolz & A. Menzel (2023): Weather explains the decline and rise of insect biomass over 34 years. – Nature [].

Orgiazzi, A., R. D. Bardgett, E. Barrios, V. Behan-Pelletier, M. J. I. Briones, J. L. Chotte, G. B. De Beyn, P. Eggleton, N. Fierer, T. Fraser & et al. (2016): Global soil diversity atlas, European Union, Luxembourg.

Outhwaite, C. L., P. McCann & T. Newbold (2022): Agriculture and climate change are reshaping insect biodiversity worldwide. – Nature 605: 97–102.

Pereira, H. & D. H. Cooper (2006): Towards the global monitoring of biodiversity change. – Trends in Ecology & Evolution 21: 123–129.

Pereira, H. M., P. W. Leadley, V. Proença, R. Alkemade, J. P. W. Scharlemann, J. F. Fernandez-Manjarrés, M. B. Araújo, P. Balvanera, R. Biggs, W. W. L. Cheung & et al. (2010): Scenarios for Global Biodiversity in the 21st Century. – Science 330: 1496–1501.

Pey, B., M.-A. Laporte, J. Nahmani, A. Auclerc, Y. Capowiez, G. Caro, D. Cluzeau, J. Cortet, T. Decaëns, F. Dubs & et al. (2014a): A thesaurus for soil invertebrate trait-based approaches. – PLoS ONE 9: e108985.

Pey, B., J. Nahmani, A. Auclerc, Y. Capowiez, D. Cluzeau, J. Cortet, T. Decaëns, L. Deharveng, F. Dubs, S. Joimel et al. (2014b): Current use of and future needs for soil invertebrate functional traits in community ecology. – Basic and Applied Ecology 15: 194–206.

Pham Van, Q., T. Nguyen, D. Lam, Y. Capowiez, D.A. Nguyen, P. Jouquet, T. Minh & N. Bottinelli (2023): Using morpho-anatomical traits to predict the effect of earthworms on soil water infiltration. – Geoderma 429: 116245.

Phillips, H. R. P., C. A. Guerra, M. L. C. Bartz, M. J. I. Briones, G. Brown, T. W. Crowther, O. Ferlian, O., K. B. Gongalsky, J. van den Hoogen, J. Krebs & et al. (2019): Global distribution of earthworm diversity. – Science 366: 480–485 [].

Phillips, H. R. P., E. M. Bach, M. L. C. Bartz, J. M. Bennett, R. Beugnon, M. J. I. Briones, G. G. Brown, O. Ferlian, K. B. Gongalsky, C. A. Guerra & et al. (2021): Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. – Scientific Data 8: 136 [].

Phillips, H., E. Cameron & N. Eisenhauer (2022): Illuminating biodiversity changes in the ‘Black Box’. – Research Ideas and Outcomes 8: e87143.

Pierce, S., D. Negreiros, B. E. L. Cerabolini, J. Kattge, S. Díaz, M. Kleyer, B. Shipley, S. J. Wright, N. A. Soudzilovskaia, V. G. Onipchenko & et al. (2017): A global method for calculating plant CSR ecological strategies applied across biomes worldwide. – Functional Ecology 31: 444–457 [].

Pocock, M. J. O., J. C. Tweddle, J. Savage, L. D. Robinson & H. E. Roy (2017): The diversity and evolution of ecological and environmental citizen science. – PLOS ONE 12: e0172579 [].

Potapov, A. M., X. Sun, A. D. Barnes, M. J. I. Briones, G. G. Brown, E. K. Cameron, C.-H. Chang, J. Cortet, N. Eisenhauer, A. L. C. Franco & et al. (2022): Global monitoring of soil animal communities using a common methodology. – Soil Organims 94: 55–68 [].

Reynolds, J. W. & M. J. Wetzel (2022): Nomenclatura Oligochaetologica – A catalogue of names, descriptions and type specimens. – Editio Secunda.

Riahi, K., D. P. Van Vuuren, E. Kriegler, J. Edmonds, B. C. O’Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko & et al. (2017): The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. – Global Environmental Change 42: 153–168 [].

Roumet, C., M. Birouste, C. Picon-Cochard, M. Ghestem, N. Osman, S. Vrignon-Brenas, K. Cao & A. Stokes(2016): Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. – New Phytologist 210: 815–826 [].

Schneider, F. D., D. Fichtmueller, M. M. Gossner, A. Güntsch, M. Jochum, B. König-Ries, G. Le Provost, P. Manning, A. Ostrowski, C. Penone & N. K. Simons (2019): Towards an ecological trait-data standard. – Methods in Ecology and Evolution 10: 2006–2019 [].

Seibold, S., M. M. Gossner, N. K. Simons, N. Blüthgen, J. Müller, D. Ambarlı, C. Ammer, J. Bauhus, M. Fischer, J. C. Habel & et al. (2019): Arthropod decline in grasslands and forests is associated with landscape-level drivers. – Nature 574: 671–674 [].

Shipitalo, M. & R.-C. Le Bayon (2004): Quantifying the effects of earthworms on soil aggregation and porosity. – In: Edwards, C. (ed.): Earthworm Ecology. – CRC Press: 183–200 [].

Singh, J., M. Schädler, W. Demetrio, G. G. Brown & N. Eisenhauer (2019): Climate change effects on earthworms - a review. – Soil Organisms 91: 113–137 [].

Stroud, J. L.(2019): Soil health pilot study in England: Outcomes from an on-farm earthworm survey. – PLOS ONE 14 (2019): e0203909 []

Stroud, J. L., I. Dummett, S. J. Kemp & C. J. Sturrock (2022): Working with farmers to investigate anecic earthworm middens and soil biophysical properties. – Annals of Applied Biology 182: 92–100 [].

Theobald, E. J., A. K. Ettinger, H. K., Burgess, L. B. DeBey, N. R. Schmidt, H. E. Froehlich, C. Wagner, J. HilleRisLambers, J. Tewksbury, M. A. Harsch & J. K. Parrish (2015): Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. Biological Conservation 181: 236–244 [].

Tsiafouli, M. A., J. Cortet & D. Russell (2022): A call for collaboration to create the European Atlas of Soil Fauna. – Soil Organisms 94: 175–181 [].

Urban, M. C. (2015): Climate change. Accelerating extinction risk from climate change. – Science 348: 571–573 [].

Valdez, J. W., C. T. Callaghan, J. Junker, A. Purvis, S. L. L. Hill, H. M. Pereira (2023): The undetectability of global biodiversity trends using local species richness. – Ecography 2023: e06604 [].

van Groenigen, J. W., I. M. Lubbers, H. M. J. Vos, G. G. Brown, G. B. De Deyn & K. J. van Groenigen (2015): Earthworms increase plant production: a meta-analysis. – Scientific Reports 4: 6365 [].

van Klink, R., D. E. Bowler, K. B. Gongalsky, A. B. Swengel, A. Gentile & J. M. Chase (2020): Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. – Science 368: 417–420 [].

Vidal, A., M. Blouin, I. Lubbers, Y. Capowiez, J. C. Sanchez-Hernandez, T. Calogiuri, J. W. Van Groenigen (2023): The role of earthworms in agronomy: Consensus, novel insights and remaining challenges. – In: Advances in Agronomy. – Elsevier: 1–78 [].

Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier (2007): Let the concept of trait be functional! – Oikos 116: 882–892 [].

Violle, C., B. J. Enquist, B. J. McGill, L. Jiang, C. H. Albert, C. Hulshof, V. Jung & J. Messier (2012): The return of the variance: intraspecific variability in community ecology. – Trends in Ecology & Evolution 27: 244–252 [].

Wilkinson, M. D., M. Dumontier, Ij. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos & et al. (2016): The FAIR Guiding Principles for scientific data management and stewardship. – Scientific Data 3 (2016): 160018 [].

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer & et al. (2004): The worldwide leaf economics spectrum. – Nature 428: 821–827 [].

Zanella, A., R. De Waal, B. Van Delft, J.-F. Ponge, B. Jabiol, M. De Nobili, C. Ferronato, J.-M. Gobat & A. Vacca (2018): Humusica 2, Article 9: Histic humus systems and forms—Specific terms, diagnostic horizons and overview. – Applied Soil Ecology 122: 148–153 [].

Zeiss, R., M. J. I. Briones, J. Mathieu, A. Lomba, J. Dahlke, L. Heptner, G. Salako, N. Eisenhauer & C. A. Guerra (2023): Climate effects on the distribution and conservation of commonly observed European earthworms. – Conservation Biology: e14187 [].


Additional Files



How to Cite

Ganault, P., Ristok, C., Phillips, H. R., Hedde, M., Capowiez, Y., Bottinelli, N., Decaëns, T., Marchan, D., Gerard, S., Mathieu, J., Potapov, A., Cameron, E. K., Brown, G., Bartz, M., Zeiss, R., Zi, Y., Tsiafouli, M., Russell, D. J., Guerra, C., & Eisenhauer, N. (2024). Soil BON Earthworm - A global initiative on earthworm distribution, traits, and spatiotemporal diversity patterns. SOIL ORGANISMS, 96(1).