The TeaComposition Initiative: Unleashing the power of international collaboration to understand litter decomposition

Authors

  • Ika Djukic Zürcherstrasse 111 CH-8903 Birmensdorf
  • Carlos A. Guerra German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany & Institute of Biology, Leipzig University, Leipzig, Germany
  • Fernando T. Maestre Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain & Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef, Universidad de Alicante, Alicante, Spain
  • Frank Hagedorn Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland
  • Alessandro Oggioni Institute for Electromagnetic Sensing of the Environment (CNR-IREA), Milano, Italy
  • Caterina Bergami Institute of Marine Sciences (CNR-ISMAR), Bologna, Italy
  • Barbara Magagna Environment Agency Austria, Ecosystem Research and Environmental Information Management, Vienna, Austria
  • TaeOh Kwon Field Science Center for Northern Biosphere
  • Hideaki Shibata Field Science Center for Northern Biosphere
  • Nico Eisenhauer German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany & Institute of Biology, Leipzig University, Leipzig, Germany
  • Guillaume Patoine German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany & Institute of Biology, Leipzig University, Leipzig, Germany
  • Michael Bierbaumer Reichergasse 48, 3411 Klosterneuburg-Weidling, Austria
  • Sebastian Kepfer-Rojas Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
  • Inger Kappel Schmidt Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
  • Klaus Steenberg Larsen Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
  • Claus Beier Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
  • Björn Berg Department of Forest Sciences, University of Helsinki, Finland & Section of Biology, University of Gävle, Sweden
  • Kris Verheyen Forest & Nature Lab, Department of Forest and Water Management, Ghent University, Belgium
  • Stacey M. Trevathan-Tackett Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Australia
  • Peter I. Macreadie Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Australia
  • TeaComposition initiative

DOI:

https://doi.org/10.25674/so93iss1pp73

Keywords:

Litter Carbon Turnover, Tea bag, Essential variable, Networking the Networks, Standard Observations

Abstract

Collected harmonized data on global litter decomposition are of great relevance for scientists, policymakers, and for education of the next generation of researchers and environmental managers. Here we describe the TeaComposition initiative, a global and open research collaborative network to study organic matter decomposition in a standardized way allowing comparison of decomposition rate and carbon turnover across global and regional gradients of ecosystems, climate, soils etc. The TeaComposition initiative today involves 570 terrestrial and 300 aquatic ecosystems from nine biomes worldwide.  Further, we describe how to get involved in the TeaComposition initiative by (a) implementing the standard protocol within your study site, (b) joining task forces in data analyses, syntheses and modelling efforts, (c) using collected data and samples for further analyses through joint projects, (d) using collected data for graduate seminars, and (e) strengthening synergies between biogeochemical research and a wide range of stakeholders. These collaborative efforts within/emerging from the TeaComposition initiative, thereby, will leverage our understanding  on litter decomposition at the global scale and strengthen global collaborations  essential for addressing grand scientific challenges in a rapidly changing world.

References

Aguilar-Cruz, Y., J. G. García-Franco & G. Zotz (2020): Microsites and early litter decomposition patterns in the soil and forest canopy at regional scale. – Biogeochemistry: 1–16.

Berg, B. (2014): Decomposition patterns for foliar litter–a theory for influencing factors. – Soil Biology and Biochemistry 78: 222–232.

Berg, B. & C. McClaugherty (2020): Plant litter: decomposition, humus formation, carbon sequestration (Springer, Heidelberg, 2020).

Borer, E. T., W. S. Harpole, P. B. Adler, C. A. Arnillas, M. N. Bugalho, M. W. Cadotte, M. C. Caldeira, S. Campana, C. R. Dickman, T. L. Dickson & et al. (2020): Nutrients cause grassland biomass to outpace herbivory. – Nature communications 11 (1): 6036.

Bradford, M. A., G. M. Tordoff, T. Eggers, T. H. Jones & J. E. Newington (2002): Microbiota, fauna, and mesh size interactions in litter decomposition. – Oikos 99(2): 317–323.

Delgado-Baquerizo, M., F. T. Maestre, A. Gallardo, M. A. Bowker, M.D.Wallenstein, J. L.Quero, V. Ochoa, B. Gozalo, M. García-Gómez, S. Soliveres, P. García-Palacios & et al. (2013): Decoupling of soil nutrient cycles as a function of aridity in global drylands. – Nature 502 (7473): 672–675.

Didion, M., A. Repo, J. Liski, M. Forsius, M. Bierbaumer & I. Djukic (2016): Towards Harmonizing Leavs Litter Decomposition Studies Using Standard Tea Bags—A Field Study and Model Application. – Forests 7(8): 167.

Dietzen, C. A., K. S. Larsen, P. L. Ambus, A. Michelsen, M. F. Arndal, C. Beier, S. Reinsch & I. K. Schmidt (2019): Accumulation of soil carbon under elevated CO2 unaffected by warming and drought. – Global Change Biology 25: 2970–2977.

Djukic, I., S. Kepfer-Rojas, I. K. Schmidt, K. S. Larsen, C. Beier, B. Berg, K. Verheyen, A. Caliman, A. Paquette, A. Gutiérrez-Girón & et al. (2018): Early stage litter decomposition across biomes. – Science of the Total Environment 628-629: 1369–1394.

Eggleton, P., H. Griffiths, L. Ashton, S. Law, T. A. Evans & K. Parr (2020): Not our cup of tea: the Tea Bag Index (Kueskamp et al. 2013) for assessing decomposition is problematic in most environments, due to macrofauna. – Authorea Preprints.

García‐Palacios, P., F. T. Maestre, J. Kattge & D. H. Wall (2013): Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. – Ecology letters 16 (8): 1045–1053.

Guerra, C. A., A. Heintz-Buschart, J. Sikorski, A. Chatzinotas, N. Guerrero-Ramírez, S. Cesarz, L. Beaumelle, M. C. Rillig, F. T. Maestre, M. Delgado-Baquerizo & et al. (2020): Blind spots in global soil biodiversity and ecosystem function research. – Nature communications 11(1): 1–13.

Guerra, C. A., R. D. Bardgett, L. Caon, T. W. Crowther, M. Delgado-Baquerizo, L. Montanarella, L. M. Navarro, A. Orgiazzi, B. K. Singh, L. Tedersoo & et al. (2021): Tracking, targeting, and conserving soil biodiversity: A monitoring and indicator system can inform policy. – Science 371 (6526): 239–241.

Halbritter, A. H., H. J. De Boeck, A. E. Eycott, D. A. Robinson, S. Vicca, B. Berauer, C. T. Christiansen, M. Estiarte, J. M. Grünzweig, R. Gya & et al. (2020): The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). – Methods in Ecology and Evolution 11: 22–37.

Heintz-Buschart, A., C. Guerra, I. Djukic, S. Cesarz, A. Chatzinotas, G. Patoine, J. Sikorski, F. Buscot, K. Küsel, C. E. Wegner & N. Eisenhauer (2020): Microbial diversity-ecosystem function relationships across environmental gradients. – Research Ideas and Outcomes 6: e52217.

IPCC (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen & et al. (eds)].

IPBES (2019): Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Díaz, J. Settele, E. Brondízio and H. T. Ngo. – Bonn, Germany, IPBES Secretariat: 1753.

Keuskamp, J. A., B. J. Dingemans, T. Lehtinen, J. M. Sarneel & M. M. Hefting (2013): Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. – Methods in Ecology and Evolution 4(11): 1070–1075.

Luo, Y., J. Melillo, S. Niu, C. Beier, J. Clark, A. Classen, E. Davidson, J. S. Dukes, R. D. Evans, C. Field, C. I. Czimczik & et al. (2011): Coordinated Approaches to Quantify Long-Term Ecosystem dynamics in Response to Global Change. – Global Change Biology 17: 843–854.

Maestre, F. T., J. L. Quero, N. J. Gotelli, A. Escudero, V. Ochoa, M. Delgado-Baquerizo, M. García-Gómez, M. A. Bowker, S. Soliveres, C. Escolar & et al. (2012): Plant species richness and ecosystem multifunctionality in global drylands. – Science 335 (6065): 214–218.

Maestre, F. T. & N. Eisenhauer (2019): Recommendations for establishing global collaborative networks in soil ecology. – Soil organisms 91(3): 73–85.

Mirtl, M., T. E. Borer, I. Djukic, M. Forsius, H. Haubold, W. Hugo, J. Jourdan, D. Lindenmayer, W. H. McDowell, H. Muraoka & et al. (2018): Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. – Science of the total Environment 626: 1439–1462.

Moore, T. R., J. A. Trofymow, C. E. Prescott, B. D. Titus & CIDET Working Group (2017): Can short-term litter-bag measurements predict long-term decomposition in northern forests? – Plant and soil 416 (1-2): 419–426.

Ogden, L. E. (2017). Brewing big data: the tea-bag index. – BioScience 67(7): 680–680.

Oggioni, A. & C. Bergami (2021). oggioniale/TeaCompositionCatalogue: First release of tea composition catalogue (Version v1.0). Zenodo [http://doi.org/10.5281/zenodo.4638828].

Rillig, M. C., M. Ryo, A. Lehmann, C. A. Aguilar-Trigueros, S. Buchert, A. Wulf, A. Iwasaki, J. Roy & G. Yang (2019): The role of multiple global change factors in driving soil functions and microbial biodiversity. – Science 366(6467): 886–890.

Singh, J. S. & S. R. Gupta (1977): Plant decomposition and soil respiration in terrestrial ecosystems. – The botanical review 43(4): 449–528.

Song, J., S. Wan, S. Piao, A. Knapp, A. Classen, S. Vicca, P. Ciais, M. Hovenden, S. Leuzinger, C. Beier & et al. (2019): A meta-analysis of 1119 manipulative experiments on terrestrial carbon-cycling responses to global change. – Nature Ecology and Evolution: 1309–1320.

Spiegel, H., T. Mosleitner, T. Sandén & J. G. Zaller (2018): Effects of two decades of organic and mineral fertilization of arable crops on earthworms and standardized litter decomposition. Die Bodenkultur. – Journal of Land Management, Food and Environment 69(1): 17–28.

Tiegs, S. D., S. D. Langhans, K. Tockner & M. O. Gessner (2007). Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. – Journal of the North American Benthological Society 26(1), 70–77.

Van Groenigen, K. J., X. Qi, C. W. Osenberg, Y. Luo & B. A. Hungate (2014): Faster decomposition under increased atmospheric CO2 limits soil carbon storage. – Science 1249534.

Vicca, S, M. Bahn, M. Estiarte, E. E. van Loon, R. Vargas, G. Alberti, P. Ambus, M. A. Arain, C. Beier, L. Bentley & et al. (2014): Can current moisture responses predict soil CO 2 efflux under altered precipitation regimes? A synthesis of manipulation experiments. – Biogeosciences 11: 2991–3013.

Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne & et al. (2016): The FAIR Guiding Principles for scientific data management and stewardship. – Scientific data 3(1): 1–9.

Downloads

Published

2021-04-01 — Updated on 2021-04-01

Versions

Issue

Section

CALL FOR COLLABORATION

How to Cite

The TeaComposition Initiative: Unleashing the power of international collaboration to understand litter decomposition . (2021). Soil Organisms, 93(1), 73–78. https://doi.org/10.25674/so93iss1pp73