The TeaComposition Initiative: Unleashing the power of international collaboration to understand litter decomposition
DOI:
https://doi.org/10.25674/so93iss1pp73Keywords:
Litter Carbon Turnover, Tea bag, Essential variable, Networking the Networks, Standard ObservationsAbstract
Collected harmonized data on global litter decomposition are of great relevance for scientists, policymakers, and for education of the next generation of researchers and environmental managers. Here we describe the TeaComposition initiative, a global and open research collaborative network to study organic matter decomposition in a standardized way allowing comparison of decomposition rate and carbon turnover across global and regional gradients of ecosystems, climate, soils etc. The TeaComposition initiative today involves 570 terrestrial and 300 aquatic ecosystems from nine biomes worldwide. Further, we describe how to get involved in the TeaComposition initiative by (a) implementing the standard protocol within your study site, (b) joining task forces in data analyses, syntheses and modelling efforts, (c) using collected data and samples for further analyses through joint projects, (d) using collected data for graduate seminars, and (e) strengthening synergies between biogeochemical research and a wide range of stakeholders. These collaborative efforts within/emerging from the TeaComposition initiative, thereby, will leverage our understanding on litter decomposition at the global scale and strengthen global collaborations essential for addressing grand scientific challenges in a rapidly changing world.
Downloads
References
Aguilar-Cruz, Y., J. G. García-Franco & G. Zotz (2020): Microsites and early litter decomposition patterns in the soil and forest canopy at regional scale. – Biogeochemistry: 1–16.
Berg, B. (2014): Decomposition patterns for foliar litter–a theory for influencing factors. – Soil Biology and Biochemistry 78: 222–232.
Berg, B. & C. McClaugherty (2020): Plant litter: decomposition, humus formation, carbon sequestration (Springer, Heidelberg, 2020).
Borer, E. T., W. S. Harpole, P. B. Adler, C. A. Arnillas, M. N. Bugalho, M. W. Cadotte, M. C. Caldeira, S. Campana, C. R. Dickman, T. L. Dickson & et al. (2020): Nutrients cause grassland biomass to outpace herbivory. – Nature communications 11 (1): 6036.
Bradford, M. A., G. M. Tordoff, T. Eggers, T. H. Jones & J. E. Newington (2002): Microbiota, fauna, and mesh size interactions in litter decomposition. – Oikos 99(2): 317–323.
Delgado-Baquerizo, M., F. T. Maestre, A. Gallardo, M. A. Bowker, M.D.Wallenstein, J. L.Quero, V. Ochoa, B. Gozalo, M. García-Gómez, S. Soliveres, P. García-Palacios & et al. (2013): Decoupling of soil nutrient cycles as a function of aridity in global drylands. – Nature 502 (7473): 672–675.
Didion, M., A. Repo, J. Liski, M. Forsius, M. Bierbaumer & I. Djukic (2016): Towards Harmonizing Leavs Litter Decomposition Studies Using Standard Tea Bags—A Field Study and Model Application. – Forests 7(8): 167.
Dietzen, C. A., K. S. Larsen, P. L. Ambus, A. Michelsen, M. F. Arndal, C. Beier, S. Reinsch & I. K. Schmidt (2019): Accumulation of soil carbon under elevated CO2 unaffected by warming and drought. – Global Change Biology 25: 2970–2977.
Djukic, I., S. Kepfer-Rojas, I. K. Schmidt, K. S. Larsen, C. Beier, B. Berg, K. Verheyen, A. Caliman, A. Paquette, A. Gutiérrez-Girón & et al. (2018): Early stage litter decomposition across biomes. – Science of the Total Environment 628-629: 1369–1394.
Eggleton, P., H. Griffiths, L. Ashton, S. Law, T. A. Evans & K. Parr (2020): Not our cup of tea: the Tea Bag Index (Kueskamp et al. 2013) for assessing decomposition is problematic in most environments, due to macrofauna. – Authorea Preprints.
García‐Palacios, P., F. T. Maestre, J. Kattge & D. H. Wall (2013): Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. – Ecology letters 16 (8): 1045–1053.
Guerra, C. A., A. Heintz-Buschart, J. Sikorski, A. Chatzinotas, N. Guerrero-Ramírez, S. Cesarz, L. Beaumelle, M. C. Rillig, F. T. Maestre, M. Delgado-Baquerizo & et al. (2020): Blind spots in global soil biodiversity and ecosystem function research. – Nature communications 11(1): 1–13.
Guerra, C. A., R. D. Bardgett, L. Caon, T. W. Crowther, M. Delgado-Baquerizo, L. Montanarella, L. M. Navarro, A. Orgiazzi, B. K. Singh, L. Tedersoo & et al. (2021): Tracking, targeting, and conserving soil biodiversity: A monitoring and indicator system can inform policy. – Science 371 (6526): 239–241.
Halbritter, A. H., H. J. De Boeck, A. E. Eycott, D. A. Robinson, S. Vicca, B. Berauer, C. T. Christiansen, M. Estiarte, J. M. Grünzweig, R. Gya & et al. (2020): The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). – Methods in Ecology and Evolution 11: 22–37.
Heintz-Buschart, A., C. Guerra, I. Djukic, S. Cesarz, A. Chatzinotas, G. Patoine, J. Sikorski, F. Buscot, K. Küsel, C. E. Wegner & N. Eisenhauer (2020): Microbial diversity-ecosystem function relationships across environmental gradients. – Research Ideas and Outcomes 6: e52217.
IPCC (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen & et al. (eds)].
IPBES (2019): Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Díaz, J. Settele, E. Brondízio and H. T. Ngo. – Bonn, Germany, IPBES Secretariat: 1753.
Keuskamp, J. A., B. J. Dingemans, T. Lehtinen, J. M. Sarneel & M. M. Hefting (2013): Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. – Methods in Ecology and Evolution 4(11): 1070–1075.
Luo, Y., J. Melillo, S. Niu, C. Beier, J. Clark, A. Classen, E. Davidson, J. S. Dukes, R. D. Evans, C. Field, C. I. Czimczik & et al. (2011): Coordinated Approaches to Quantify Long-Term Ecosystem dynamics in Response to Global Change. – Global Change Biology 17: 843–854.
Maestre, F. T., J. L. Quero, N. J. Gotelli, A. Escudero, V. Ochoa, M. Delgado-Baquerizo, M. García-Gómez, M. A. Bowker, S. Soliveres, C. Escolar & et al. (2012): Plant species richness and ecosystem multifunctionality in global drylands. – Science 335 (6065): 214–218.
Maestre, F. T. & N. Eisenhauer (2019): Recommendations for establishing global collaborative networks in soil ecology. – Soil organisms 91(3): 73–85.
Mirtl, M., T. E. Borer, I. Djukic, M. Forsius, H. Haubold, W. Hugo, J. Jourdan, D. Lindenmayer, W. H. McDowell, H. Muraoka & et al. (2018): Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. – Science of the total Environment 626: 1439–1462.
Moore, T. R., J. A. Trofymow, C. E. Prescott, B. D. Titus & CIDET Working Group (2017): Can short-term litter-bag measurements predict long-term decomposition in northern forests? – Plant and soil 416 (1-2): 419–426.
Ogden, L. E. (2017). Brewing big data: the tea-bag index. – BioScience 67(7): 680–680.
Oggioni, A. & C. Bergami (2021). oggioniale/TeaCompositionCatalogue: First release of tea composition catalogue (Version v1.0). Zenodo [http://doi.org/10.5281/zenodo.4638828].
Rillig, M. C., M. Ryo, A. Lehmann, C. A. Aguilar-Trigueros, S. Buchert, A. Wulf, A. Iwasaki, J. Roy & G. Yang (2019): The role of multiple global change factors in driving soil functions and microbial biodiversity. – Science 366(6467): 886–890.
Singh, J. S. & S. R. Gupta (1977): Plant decomposition and soil respiration in terrestrial ecosystems. – The botanical review 43(4): 449–528.
Song, J., S. Wan, S. Piao, A. Knapp, A. Classen, S. Vicca, P. Ciais, M. Hovenden, S. Leuzinger, C. Beier & et al. (2019): A meta-analysis of 1119 manipulative experiments on terrestrial carbon-cycling responses to global change. – Nature Ecology and Evolution: 1309–1320.
Spiegel, H., T. Mosleitner, T. Sandén & J. G. Zaller (2018): Effects of two decades of organic and mineral fertilization of arable crops on earthworms and standardized litter decomposition. Die Bodenkultur. – Journal of Land Management, Food and Environment 69(1): 17–28.
Tiegs, S. D., S. D. Langhans, K. Tockner & M. O. Gessner (2007). Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. – Journal of the North American Benthological Society 26(1), 70–77.
Van Groenigen, K. J., X. Qi, C. W. Osenberg, Y. Luo & B. A. Hungate (2014): Faster decomposition under increased atmospheric CO2 limits soil carbon storage. – Science 1249534.
Vicca, S, M. Bahn, M. Estiarte, E. E. van Loon, R. Vargas, G. Alberti, P. Ambus, M. A. Arain, C. Beier, L. Bentley & et al. (2014): Can current moisture responses predict soil CO 2 efflux under altered precipitation regimes? A synthesis of manipulation experiments. – Biogeosciences 11: 2991–3013.
Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne & et al. (2016): The FAIR Guiding Principles for scientific data management and stewardship. – Scientific data 3(1): 1–9.
Downloads
Published
Versions
- 2021-04-01 (4)
- 2021-04-01 (3)
- 2021-04-01 (2)
- 2021-04-01 (1)
Issue
Section
License
All articles on www.soil-organisms.org may be read, copied, distributed, and (in limited quantity) printed for non-commercial, private, scientific purposes.