Towards a global synthesis of Collembola knowledge – challenges and potential solutions

Authors

  • Anton Potapov J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspuele 2, 37073 Göttingen, Germany https://orcid.org/0000-0002-4456-1710
  • Bruno Bellini Department of Botany and Zoology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
  • Steven Chown Securing Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Victoria 3800, Australia
  • Louis Deharveng Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205, CNRS, Muséum national d’Histoire naturelle, Sorbonne Université, EPHE, 45 rue Buffon, 75005 Paris, France
  • Frans Janssens Department of Biology, University of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium
  • Ľubomír Kováč Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Šrobárova 2, 041 54 Košice, Slovakia
  • Natalia Kuznetsova Moscow State Pedagogical University, Institute of Biology and Chemistry, Kibalchicha str. 6k3 129164 Moscow, Russia
  • Jean-François Ponge Muséum National d’Histoire Naturelle, CNRS UMR 7179, 4 avenue du Petit-Château, 91800 Brunoy, France
  • Mikhail Potapov Moscow State Pedagogical University, Institute of Biology and Chemistry, Kibalchicha str. 6k3 129164 Moscow, Russia
  • Pascal Querner University of Natural Resources and Life Sciences, Department of Integrated Biology and Biodiversity Research, Institute of Zoology, Gregor-Mendel-Straße 33, A-1180 Vienna, Austria
  • David Russell Senckenberg Museum of Natural History, Soil Zoology Division, Postfach 300 154, 02806 Görlitz, Germany
  • Xin Sun Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China https://orcid.org/0000-0002-2782-649X
  • Feng Zhang Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095 China
  • Matty Berg Vrije Universiteit Amsterdam, Department of Ecological Science, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands

DOI:

https://doi.org/10.25674/so92iss3pp161

Keywords:

springtails, taxonomy, macroecology, #GlobalCollembola, functional traits

Abstract

Collembola are among the most abundant and diverse soil microarthropods, which are found in almost all (semi)terrestrial environments and often serve as model organisms in empirical studies. Diverse data collected on the biology and ecology of Collembola over the last century are waiting for synthesis studies, while developing technologies may facilitate generation of new knowledge. Collembola research in 2020 is entering the stage of global synthesis and in this opinion paper we address the main challenges that the community of collembologists is facing on this avenue. We first discuss the present status and social context of Collembola taxonomy and the potential use of novel technologies to describe new species. We then focus on aspects of community ecology, reviewing the processes of dispersal, environmental and biotic filtering, from the spatial scale of microhabitat to the globe. We also discuss the involvement of Collembola in ecosystem processes and which proxies, such as functional traits, can be used to predict the functional roles of species. Finally, we provide recommendations on how we can improve community data collection by using standard methods and better data handling practices. We call for (1) integrating morphological descriptions with high-resolution photographs and genetic barcodes for species descriptions and developing of user friendly software and machine learning approaches to facilitate deposition of structured taxonomic knowledge on web platforms; (2) multiscale studies on biodiversity distribution and community processes, especially including dispersal mechanisms; (3) recording and sharing functional, not only morphological, trait data in controlled experiments and field surveys; (4) knowledge synthesis and meta-analysis studies on the topics of ecosystem roles of Collembola, conservation of its diversity, feeding behaviour, protection mechanisms and dispersal of different Collembola species, and effects of land use and climate change on collembolan communities; (5) joint efforts in covering the gaps in Collembola knowledge, especially in underexplored regions (predominantly tropics and subtropics) using standard methodologies; (6) data sharing and its integration in open structured databases. We believe that Collembola studies could make use of new technologies and ongoing changes in society. To facilitate the progress across these research topics by 2040, we have established #GlobalCollembola, a distributed-effort community-driven initiative that aims to provide open and global data on Collembola taxonomic and genetic diversity, abundance, traits and literature and to coordinate global efforts in covering the key knowledge gaps.

Downloads

Download data is not yet available.

References

A’Bear, A.D., L. Boddy & T. Hefin Jones (2012): Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing Collembola. – Global Change Biology 18: 1823–1832 [https://doi.org/10.1111/j.1365-2486.2012.02637.x].

Andre, H.M., X. Ducarme & P. Lebrun (2002): Soil biodiversity: myth, reality or conning? – Oikos 96: 3–24.

Anslan, S., M. Bahram & L. Tedersoo (2018): Seasonal and annual variation in fungal communities associated with epigeic springtails (Collembola spp.) in boreal forests. – Soil Biology and Biochemistry 116: 245–252 [https://doi.org/10.1016/j.soilbio.2017.10.021].

Auclerc, A., J.-F. Ponge, S. Barot & F. Dubs (2009): Experimental assessment of habitat preference and dispersal ability of soil springtails. – Soil Biology and Biochemistry 41: 1596–1604 [https://doi.org/10.1016/j.soilbio.2009.04.017].

Averill, C., B. L. Turner & A. C. Finzi (2014): Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. – Nature 505: 543–545 [https://doi.org/10.1038/nature12901].

Bahrndorff, S., M. Holmstrup, H. Petersen & V. Loeschcke (2006): Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. – Journal of Insect Physiology 52: 951–959 [https://doi.org/10.1016/j.jinsphys.2006.06.005].

Baird, H. P., C. Janion-Scheepers, M. I. Stevens, R. I. Leihy & S. L. Chown (2019): The ecological biogeography of indigenous and introduced Antarctic springtails. – Journal of Biogeography 46: 1959–1973 [https://doi.org/10.1111/jbi.13639].

Bellinger, P. F., K. A. Christiansen & F. Janssens (1996-2020): Checklist of the Collembola of the World [WWW Document]. URL http://www.collembola.org/ (accessed 5.29.20).

Berg, M. P. (2012): Patterns of Biodiversity at Fine and Small Spatial Scales. – In: Wall, D. H., R. D. Bardgett, V. Behan-Pelletier, , J. E. Herrick, T. H. Jones, K. Ritz, J. Six. D. R. Strong & W. H. van der Putten (eds): Soil Ecology and Ecosystem Services. – Oxford University Press: 136–152 [https://doi.org/10.1093/acprof:oso/9780199575923.003.0014].

Berg, M. P., J. P. Kniese, J. J. M. Bedaux & H. A. Verhoef (1998): Dynamics and stratification of functional groups of micro-and mesoarthropods in the organic layer of a Scots pine forest. – Biology and Fertility of Soils 26: 268–284.

Berg, M. P., M. Stoffer & H. H. van den Heuvel (2004): Feeding guilds in Collembola based on digestive enzymes. – Pedobiologia 48: 589–601 [https://doi.org/10.1016/j.pedobi.2004.07.006].

Betsch, J. & A. Waller (1994): Chaetotaxic nomenclature of the head, thorax and abdomen in Symphypleona (Insecta, Collembola). – Acta Zoologica Fennica 195: 5–12.

Bokhorst, S., G. K. Phoenix, J. W. Bjerke, T. V. Callaghan, F. Huyer-Brugman & M. P. Berg (2012): Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. – Global Change Biology 18: 1152–1162.

Bretfeld, G., (1999): Synopses on Palaearctic Collembola: Symphypleona. – Stattliches Museum für Naturkunde Görlitz, Görlitz.

Buse, T., L. Ruess & J. Filser (2014): Collembola gut passage shapes microbial communities in faecal pellets but not viability of dietary algal cells. – Chemoecology 24: 79–84 [https://doi.org/10.1007/s00049-013-0145-y].

Cassagnau, M. P. (1974): Chaetotaxie et phylogénie chez les Collemboles Poduromorphes. – Pedobiologia 14: 300–312.

Chahartaghi, M., S. Scheu & L. Ruess (2006): Sex ratio and mode of reproduction in Collembola of an oak-beech forest. – Pedobiologia 50: 331–340.

Chao, A. & L. Jost (2012): Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. – Ecology 93: 2533–2547 [https://doi.org/10.1890/11-1952.1].

Chase, J. M. & T. M. Knight (2013): Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. – Ecology Letters 16: 17–26 [https://doi.org/10.1111/ele.12112].

Chauvat, M., G. Perez & J.-F. Ponge (2014): Foraging patterns of soil springtails are impacted by food resources. – Applied Soil Ecology 82: 72–77 [https://doi.org/10.1016/j.apsoil.2014.05.012].

Chauvat, M., V. Wolters & J. Dauber (2007): Response of collembolan communities to land-use change and grassland succession. – Ecography 30: 183–192 [https://doi.org/10.1111/j.0906-7590.2007.04888.x].

Chen, T.-W., P. Sandmann, I. Schaefer & S. Scheu (2017): Neutral lipid fatty acid composition as trait and constraint in Collembola evolution. – Ecology and Evolution 7: 9624–9638 [https://doi.org/10.1002/ece3.3472].

Chown, S. L. & K. J. Gaston (2008): Macrophysiology for a changing world. – Proceedings of the Royal Society B: Biological Sciences 275: 1469–1478 [https://doi.org/10.1098/rspb.2008.0137].

Chown, S.L., S. Slabber, M. A. McGeoch, C. Janion &

H. P. Leinaas (2007): Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. – Proceedings of the Royal Society B: Biological Sciences 274: 2531–2537 [https://doi.org/10.1098/rspb.2007.0772].

Chown, S. L., J. G. Sørensen & J. S. Terblanche(2011): Water loss in insects: An environmental change perspective. – Journal of Insect Physiology, “Cold and Desiccation Tolerance” honoring Karl Erik Zachariassen 57: 1070–1084 [https://doi.org/10.1016/j.jinsphys.2011.05.004].

Chust, G., J. L. Pretus, D. Ducrot, A. Bedòs & L.Deharveng (2003): Identification of landscape units from an insect perspective. – Ecography 26: 257–268 [https://doi.org/10.1034/j.1600-0587.2003.03325.x].

Cicconardi, F., P. A. V. Borges, D. Strasberg, P. Oromí, H. López, A. J. Pérez-Delgado, J. Casquet, J. Caujapé-Castells, J. M. Fernández-Palacios, C. Thébaud & B. C.Emerson (2017): MtDNA metagenomics reveals large-scale invasion of belowground arthropod communities by introduced species. – Molecular Ecology 26: 3104–3115 [https://doi.org/10.1111/mec.14037].

Cicconardi, F., P. P. Fanciulli& B. C. Emerson (2013): Collembola, the biological species concept and the underestimation of global species richness. – Molecular Ecology 22: 5382–5396 [https://doi.org/10.1111/mec.12472].

Cohen, J. E., S. L. Pimm, P. Yodzis & J. Saldaña (1993): Body sizes of animal predators and animal prey in food webs. – Journal of Animal Ecology 62: 67–78 [https://doi.org/10.2307/5483].

Coleman, D.C., M. A. Callaham & D. Crossley Jr (2017): Fundamentals of soil ecology, 3d (ed). – Academic press.

Collins, G. E., I. D. Hogg, P. Convey, A. D. Barnes & I. R. McDonald (2019): Spatial and temporal scales matter when assessing the species and genetic diversity of springtails (Collembola) in Antarctica. – Frontiers in Ecology and Evolution 7: 76 [https://doi.org/10.3389/fevo.2019.00076].

Coulibaly, S. F. M., B. R. Winck, M. Akpa-Vinceslas, L. Mignot, M. Legras, E. Forey & M. Chauvat (2019): Functional assemblages of Collembola determine soil microbial communities and associated functions. – Frontiers in Environmental Science 7: 52 [https://doi.org/10.3389/fenvs.2019.00052].

Coulson, S. J., A. Fjellberg, , D. J. Gwiazdowicz, N. V. Lebedeva, E. N. Melekhina, , T. Solhøy, , C. Erséus, K. Maraldo, L. Miko, H. Schatz, R. M.Schmelz, G. Søli & E. Stur (2013): Introduction of invertebrates into the High Arctic via imported soils: the case of Barentsburg in the Svalbard. – Biological Invasions 15: 1–5 [https://doi.org/10.1007/s10530-012-0277-y].

Coulson, S. J., I. D.Hodkinson, N. R. Webb & J.A. Harrison (2002): Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. – Functional Ecology 16: 353–356 [https://doi.org/10.1046/j.1365-2435.2002.00636.x].

Coyle, D. R., U. J. Nagendra, M. K. Taylor, J. H. Campbell, C. E. Cunard, A. H. Joslin, A. Mundepi, C.A. Phillips & M. A. Callaham (2017): Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. – Soil Biology and Biochemistry 110: 116–133 [https://doi.org/10.1016/j.soilbio.2017.03.008].

Crowther, T. W., L. Boddy & T. H. Jones (2011): Outcomes of fungal interactions are determined by soil invertebrate grazers: Grazers alter fungal community. – Ecology Letters 14: 1134–1142 [https://doi.org/10.1111/j.1461-0248.2011.01682.x].

Culik, M. P. & D. Z. Filho Zeppelini (2003): Diversity and distribution of Collembola (Arthropoda: Hexapoda) of Brazil. – Biodiversity & Conservation 12: 1119–1143 [https://doi.org/10.1023/A:1023069912619].

de Carvalho, M. de, F. Bockmann, D. Amorim, M. de Vivo, M. Toledo-Piza, N. Menezes, J. Figueiredo, R. Macedo Corrêa e Castro, A. Gill, J. McEachran, L. Compagno, R. Schelly, R. Britz, J. Lundberg, R. Vari& G. Nelson (2005): Revisiting the taxonomic impediment. Letters to the editor. – Science 307: 353.

de Jong, Y., M. Verbeek, V. Michelsen, P. de P. Bjørn, W. Los, F. Steeman, N. Bailly, C. Basire, P. Chylarecki, E. Stloukal, G. Hagedorn, F. T. Wetzel, F. Glöckler, A. Kroupa, G. Korb, A. Hoffmann, C. Häuser, A. Kohlbecker, A. Müller, A. Güntsch, P. Stoev & L. Penev (2014): Fauna Europaea – all European animal species on the web. – Biodiversity Data Journal 2: e4034 [https://doi.org/10.3897/BDJ.2.e4034].

Deharveng, L. (1983): Morphologie évolutive des Collemboles Neanurinae en particulier de la lignée Neanurienne. – Travaux du Laboratoire d’Ecobiologie des Arthropodes Edaphiques, Toulouse 4: 1–63.

Deharveng, L. (2004): Recent advances in Collembola systematics. – Pedobiologia 48: 415–433 [https://doi.org/10.1016/j.pedobi.2004.08.001].

DeSalle, R., M. G. Egan & M. Siddall (2005): The unholy trinity: taxonomy, species delimitation and DNA barcoding. – Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1905–1916 [https://doi.org/10.1098/rstb.2005.1722].

Dillon, M. E., G. Wang & R. B. Huey (2010): Global metabolic impacts of recent climate warming. – Nature 467: 704–706 [https://doi.org/10.1038/nature09407].

Dunger, W. & B. Schlitt (2011): Synopses on Palaearctic Collembola: Tullbergiidae. – Soil Organisms 83.

Dunger, W., H.-J. Schulz & B. Zimdars (2002): Colonization behaviour of Collembola under different conditions of dispersal: Proceedings of the Xth international Colloquium on Apterygota, České Budějovice 2000: Apterygota at the Beginning of the Third Millennium. – Pedobiologia 46:

–327 [https://doi.org/10.1078/0031-4056-00139].

Ebach, M. C, A. G. Valdecasas & Q. D. Wheeler (2011): Impediments to taxonomy and users of taxonomy: accessibility and impact evaluation. – Cladistics 27:

–557.

Eisenhauer, N., A. C. W.Sabais & S. Scheu (2011): Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. – Soil Biology and Biochemistry 43: 1697–1704 [https://doi.org/10.1016/j.soilbio.2011.04.015].

Eitzinger, B., N. Abrego., D. Gravel, T. Huotari, E. J. Vesterinen & T. Roslin (2019): Assessing changes in arthropod predator–prey interactions through DNA‐based gut content analysis—variable environment, stable diet. – Molecular Ecology 28: 266–280.

Ellers, J., M. P. Berg, A. T. C. Dias, S. Fontana, A. Ooms & M. Moretti (2018): Diversity in form and function: Vertical distribution of soil fauna mediates multidimensional trait variation. – Journal of Animal Ecology 87: 933–944 [https://doi.org/10.1111/1365-2656.12838].

Endlweber, K. & S. Scheu (2007): Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. – Biology and Fertility of Soils 43: 741–749 [https://doi.org/10.1007/s00374-006-0157-7].

Erktan, A., D. Or & S. Scheu (2020a): The physical structure of soil: determinant and consequence of trophic interactions. – Soil Biology & Biochemistry [https://doi.org/10.1016/j.soilbio.2020.107876].

Erktan, A., M. C. Rillig, A. Carminati, A. Jousset & S. Scheu (2020b): Bacterial and fungal predator – prey interactions modulate soil aggregation (preprint): Biogeophysics: Physical - Biological Coupling [https://doi.org/10.5194/bg-2020-48].

Ettema, C.H. & D. A. Wardle (2002): Spatial soil ecology. – Trends in Ecology & Evolution 17: 177–183.

Ferreira, A. S., I. M. Rocha, S. Dos, B. C. Bellini & A. Vasconcellos (2018): Effects of habitat heterogeneity on epiedaphic Collembola (Arthropoda: Hexapoda) in a semiarid ecosystem in Northeast Brazil. – Zoologia (Curitiba) 35 [https://doi.org/10.3897/zoologia.35.e13653].

Fjellberg, A. (1999): The labial palp in Collembola. – Zoologischer Anzeiger 237: 309–330.

Fountain, M. T. & S. P. Hopkin (2005): Folsomia candida (Collembola): a “Standard” Soil Arthropod*. – Annual Review of Entomology 50: 201–222 [https://doi.org/10.1146/annurev.ento.50.071803.130331].

Fujii, S., A. Yamada, K. Fukushima, S. Saitoh, K. Kitayama & H. Takeda (2013): Relationships among distribution of fine roots, soil DOC concentration and Collembola. – Plant Root 7:

–27.

Gallagher, R. V., D. S. Falster, B. S. Maitner, R. Salguero-Gómez, V. Vandvik, W. D. Pearse, F. D. Schneider, J. Kattge, J. H. Poelen, J. S. Madin, M. J. Ankenbrand, C. Penone, X. Feng, V. M. Adams, J. Alroy, S. C. Andrew, M. A. Balk, L. M. Bland, B. L. Boyle, C. H. Bravo-Avila, I. Brennan, A. J. R. Carthey, R. Catullo, B. R. Cavazos, D. A. Conde, S. L. Chown, B. Fadrique, H. Gibb, A. H. Halbritter, J. Hammock, J. A. Hogan, H. Holewa, M. Hope, C. M. Iversen, M. Jochum, M. Kearney, A. Keller, P. Mabee, P. Manning, L. McCormack, S. T. Michaletz, D. S. Park, T. M. Perez, S. Pineda-Munoz, C. A. Ray, M. Rossetto, H. Sauquet, B. Sparrow, M. J. Spasojevic, R. J. Telford, J. A. Tobias, C. Violle, R. Walls, K. C. B. Weiss, M. Westoby,I. J. Wright & B. J. Enquist (2020): Open Science principles for accelerating trait-based science across the Tree of Life. – Nature Ecology & Evolution 4:

-303 [https://doi.org/10.1038/s41559-020-1109-6].

Gange, A. (2000): Arbuscular mycorrhizal fungi, Collembola and plant growth. – Tree 15: 369–372.

Gao, M., X. Sun, Z. Qiao, H. Hou, T. Lu, D.Wu & G. Jin (2018): Distinct patterns suggest that assembly processes differ for dominant arthropods in above-ground and below-ground ecosystems. – Pedobiologia 69: 17–28 [https://doi.org/10.1016/j.pedobi.2018.06.003].

Geisen, S., M. J. I. Briones, H. Gan, V. M. Behan-Pelletier, V.-P. Friman, G. Arjen de Groot, S. E. Hannula, Z. Lindo, L. Philippot, A. V. Tiunov & D. H. Wall (2019): A methodological framework to embrace soil biodiversity. – Soil Biology and Biochemistry 136: 107536 [https://doi.org/10.1016/j.soilbio.2019.107536].

Gisin, H. (1943): Ökologie und Lebensgemeinschaften der Collembolen im schweizerischen Exkursionsgebiet Basels. – A. Kundig, Geneve.

Graf, M., M. Bonn, L. Feldhahn, F: Kurth, T. E. E. Grams, S. Herrmann, M. Tarkka, F. Buscot & S. Scheu (2019): Collembola interact with mycorrhizal fungi in modifying oak morphology, C and N incorporation and transcriptomics. – Royal Society Open Science 6: 181869 [http://dx.doi.org/10.1098/rsos.181869].

Greenslade, P. (2018): Why are there so many exotic springtails in Australia? A review. – Soil Organisms 90: 141–156.

Gressitt, J. L., R. E. Leech & C. W. O’Brien(1960): Trapping of air-borne insects in the Antarctic area. – Pacific Insects 2: 245–250.

Grosswald, M. G. & T. J. Hughes (2002): The Russian component of an Arctic Ice Sheet during the Last Glacial Maximum. – Quaternary Science Reviews, EPILOG 21: 121–146 [https://doi.org/10.1016/S0277-3791(01)00078-6].

Hågvar, S. (2010): primary succession of springtails (Collembola) in a Norwegian glacier foreland. – Arctic, Antarctic, and Alpine Research 42: 422–429 [https://doi.org/10.1657/1938-4246-42.4.422].

Hagvar, S. (2000): Navigation and behaviour of four Collembola species migrating on the snow surface. – Pedobiologia 44: 221–233.

Hassall, M., S. Adl, M. Berg, B. Griffiths & S. Scheu (2006): Soil fauna–microbe interactions: towards a conceptual framework for research. – European Journal of Soil Biology, ICSZ Soil Animals and Ecosystems Services Proceedings of the XIVth International Colloquium on Soil Biology 42:

–60 [https://doi.org/10.1016/j.ejsobi.2006.07.007].

Hawes, T. C. & P. Greenslade (2013): The aerial invertebrate fauna of subantarctic Macquarie Island. – Journal of Biogeography 40: 1501–1511 [https://doi.org/10.1111/jbi.12090].

Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. deWaard (2003): Biological identifications through DNA barcodes. – Proceedings. Biological Sciences 270: 313–321 [https://doi.org/10.1098/rspb.2002.2218].

Heiniger, C., S. Barot, J.-F. Ponge, S. Salmon, L. Botton-Divet, D. Carmignac & F. Dubs (2014): Effect of habitat spatiotemporal structure on collembolan diversity. – Pedobiologia 57: 103–117 [https://doi.org/10.1016/j.pedobi.2014.01.006].

Hengl, T., J. M. Jesus, G. B. M. de, Heuvelink, M. R. Gonzalez, M. Kilibarda, A. Blagotić, W. Shangguan, M. N. Wright, X. Geng, B. Bauer-Marschallinger, M. A. Guevara, R. Vargas, R. A. MacMillan, N. H. Batjes, J. G. B. Leenaars, E. Ribeiro, I. Wheeler, S. Mantel & B. Kempen (2017): SoilGrids250m: Global gridded soil information based on machine learning. – PLOS ONE 12: e0169748 [https://doi.org/10.1371/journal.pone.0169748].

Hill, M. O. (1973): Diversity and evenness: A unifying notation and its consequences. – Ecology 54: 427–432 [https://doi.org/10.2307/1934352].

HilleRisLambers, J., P. B. Adler, W. S. Harpole, L. M. Levine & M. M. Mayfield (2012): Rethinking community assembly through the lens of coexistence theory. – Annual Review of Ecology, Evolution, and Systematics 43: 227–248 [https://doi.org/10.1146/annurev-ecolsys-110411-160411].

Holmstrup, M. (2018): Screening of cold tolerance in fifteen springtail species. – Journal of Thermal Biology 77: 1–6 [https://doi.org/10.1016/j.jtherbio.2018.07.017].

Hopkin, S. (1998): Collembola; the most abundant insects on Earth. – Antenna 22: 117–121.

Hopkin, S. P. (1997): Biology of springtails: (Insecta: Collembola). – Oxford Science Publications, Oxford.

Ingimarsdóttir, M., T. Caruso, J. Ripa, Ó. B. Magnúsdóttir, M. Migliorini & K. Hedlund (2012): Primary assembly of soil communities: disentangling the effect of dispersal and local environment. – Oecologia 170: 745–754 [https://doi.org/10.1007/s00442-012-2334-8].

IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. – Paris.

Janion-Scheepers, C., J. Measey, B. Braschler, S. L. Chown,

L. Coetzee, J. F. Colville, J. Dames, A. B. Davies, S. J. Davies, A. L. V. Davis, A. S. Dippenaar-Schoeman, G. A. Duffy, D. Fourie, C. Griffiths, C. R. Haddad, M. Hamer, D. G. Herbert, E. A. Hugo-Coetzee, A. Jacobs, K. Jacobs, C. J. Rensburg, S. van Lamani, L. N. Lotz, S. vdM. Louw, R. Lyle, A. P. Malan, M. Marais, J.-A. Neethling, T. C. Nxele, D. J. Plisko, L. Prendini, A. N. Rink, A. Swart, P. Theron, M. Truter, E. Ueckermann, V. M. Uys, M. H. Villet, S. Willows-Munro & J. R. U. Wilson (2016): Soil biota in a megadiverse country: Current knowledge and future research directions in South Africa. – Pedobiologia 59: 129–174 [https://doi.org/10.1016/j.pedobi.2016.03.004].

Janion-Scheepers, C., L. Phillips, C. M. Sgrò, G. A. Duffy, R. Hallas & S. L. Chown (2018): Basal resistance enhances warming tolerance of alien over indigenous species across latitude. – Proceedings of the National Academy of Sciences 115:

–150 [https://doi.org/10.1073/pnas.1715598115].

Janssens, F. & F. B. Dazzo (2004): Image analysis, morphometry and classification of scanned Collembola samples applied to specimen identification. – Checklist of the Collembola of the World.

Johnson, D., M. Krsek, E. M. Wellington, A. W. Stott, L. Cole, R. D. Bardgett, D. J. Read & J. R. Leake (2005): Soil invertebrates disrupt carbon flow through fungal networks. – Science 309: 1047–1047.

Joimel, S., B. Grard, A. Auclerc, M. Hedde, N. Le Doaré, S. Salmon & C. Chenu (2018): Are Collembola “flying” onto green roofs? – Ecological Engineering 111: 117–124 [https://doi.org/10.1016/j.ecoleng.2017.12.002].

Joimel, S., C. Schwartz, M. Hedde, S. Kiyota, P. H. Krogh, J. Nahmani, G. Pérès, A. Vergnes & J. Cortet (2017): Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. – Science of The Total Environment 584–585: 614–621 [https://doi.org/10.1016/j.scitotenv.2017.01.086].

Joosse, E. N. (1969): The formation and biological significance of aggregations in the distribution of Collembola. – Netherlands Journal of Zoology 20: 299–314.

Jordana, R. (2012): Synopses of Palaearctic Collembola: Capbryinae & Entomobryini. – Senkenberg Museum of Natural History Görlitz, Görlitz.

Jordana, R. & E. Baquero-Martin (2005): A proposal of characters for taxonomic identification of Entomobrya species (Collembola, Entomobryomorpha), with description of a new species. – Abhandlungen Und Berichte Des Naturkundemuseums Görlitz 76: 117–134.

Kampichler, C. & A. Bruckner (2009): The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. – Biological Reviews 84: 375–389 [https://doi.org/10.1111/j.1469-185X.2009.00078.x].

Kaneda, S. & N. Kaneko (2008): Collembolans feeding on soil affect carbon and nitrogen mineralization by their influence on microbial and nematode activities. – Biology and Fertility of Soils 44: 435–442 [https://doi.org/10.1007/s00374-007-0222-x].

Kardol, P., W. N. Reynolds, R. J. Norby & A. T. Classen (2011): Climate change effects on soil microarthropod abundance and community structure. – Applied Soil Ecology 47: 37–44 [https://doi.org/10.1016/j.apsoil.2010.11.001].

Katz, A. D., R. Giordano & F. N. Soto‐Adames (2015): Operational criteria for cryptic species delimitation when evidence is limited, as exemplified by North American Entomobrya (Collembola: Entomobryidae). – Zoological Journal of the Linnean Society 173: 818–840 [https://doi.org/10.1111/zoj.12220].

King, R. A., D. S. Read, M. Traugott & W. O. C. Symondson (2008): Molecular analysis of predation: a review of best practice for DNA-based approaches. – Molecular Ecology 17: 947–963 [https://doi.org/10.1111/j.1365-294X.2007.03613.x].

Krab, E. J., S. Monteux, J. T. Weedon & E. Dorrepaal (2019): Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra. – Soil Biology and Biochemistry 138: 107569 [https://doi.org/10.1016/j.soilbio.2019.107569].

Kuznetsova, N. A. (2003): Humidity and distribution of springtails. – Entomological Review 83: 9.

Kuznetsova, N. A., A. I. Bokova, A. K. Saraeva & Yu. B. Shveenkova (2019a): Communities of Collembola in the forests of Southern Primorye as a benchmark of high diversity and organization complexity. – Biology Bulletin 46: 483–491 [https://doi.org/10.1134/S1062359019050066].

Kuznetsova, N. A., A. I. Bokova, A. K. Saraeva & Yu. B. Shveenkova (2019b): Structure of the species diversity of soil springtails (Hexapoda, Collembola) in pine forests of the Caucasus and the Russian plain: a multi-scale approach. – Entomological Review 99: 143–157 [https://doi.org/10.1134/S0013873819020027].

Lavorel, S. & E. Garnier (2002): Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. – Functional Ecology 16:

–556.

Lehmitz, R., D. Russell, K. Hohberg, A. Christian & W. E. Xylander (2011): Wind dispersal of oribatid mites as a mode of migration. – Pedobiologia 54: 201–207.

Lin, D., J. Crabtree, I. Dillo, R. R. Downs, R. Edmunds, D. Giaretta, M. De Giusti, H. L’Hours, W. Hugo, R. Jenkyns, V. Khodiyar, M. E. Martone, M. Mokrane, V. Navale, J. Petters, B. Sierman, D. V. Sokolova, M. Stockhause & J. Westbrook (2020): The TRUST Principles for digital repositories. – Scientific Data 7: 144 [https://doi.org/10.1038/s41597-020-0486-7].

Lindo, Z. (2020): Transoceanic dispersal of terrestrial species by debris rafting. – Ecography ecog. 05155 [https://doi.org/10.1111/ecog.05155].

Liu, J., M. Gao, Y. Ma, X. Sun, X. Zhu, S. Adl & D. Wu (2019): Spatial and environmental factors are minor structuring forces in a soil Collembola metacommunity in a maize agroecosystem. – Pedobiologia 76: 150572 [https://doi.org/10.1016/j.pedobi.2019.150572].

Liu, M., L. J. Clarke, S. C. Baker, G. J. Jordan & C. P. Burridge (2019): A practical guide to DNA metabarcoding for entomological ecologists. – Ecological Entomology 45: 373–385 [https://doi.org/10.1111/een.12831].

Liu, W. P. A., C. Janion & S. L. Chown (2012): Collembola diversity in the critically endangered Cape Flats Sand Fynbos and adjacent pine plantations. – Pedobiologia 55: 203–209 [https://doi.org/10.1016/j.pedobi.2012.03.002].

Lukić, M., D. Porco, A. Bedos & L. Deharveng (2015): The puzzling distribution of Heteromurus (Verhoeffiella) absoloni Kseneman, 1938 (Collembola: Entomobryidae: Heteromurinae) resolved: detailed redescription of the nominal species and description of a new species from Catalonia (Spain). – Zootaxa 4039: 249–275 [https://doi.org/10.11646/zootaxa.4039.2.3].

Maaß, S., T. Caruso & M. C. Rillig (2015): Functional role of microarthropods in soil aggregation. – Pedobiologia 58: 59–63 [https://doi.org/10.1016/j.pedobi.2015.03.001].

Macfadyen, A. (1953): Notes on methods for the extraction of small soil arthropods. – The Journal of Animal Ecology 22: 65 [https://doi.org/10.2307/1691].

Macfadyen, A. (1961): Improved funnel-type extractors for soil arthropods. – The Journal of Animal Ecology

–184.

Makkonen, M., M. P. Berg, J. R. van Hal, T. V. Callaghan, M. C. Press & R. Aerts (2011): Traits explain the responses of a sub-arctic Collembola community to climate manipulation. – Soil Biology and Biochemistry 43: 377–384 [https://doi.org/10.1016/j.soilbio.2010.11.004].

Malcicka, M., M. P. Berg & J. Ellers (2017): Ecomorphological adaptations in Collembola in relation to feeding strategies and microhabitat. – European Journal of Soil Biology 78: 82–91 [https://doi.org/10.1016/j.ejsobi.2016.12.004].

Malmström, A. (2012): Life-history traits predict recovery patterns in Collembola species after fire: A 10 year study. – Applied Soil Ecology 56: 35–42 [https://doi.org/10.1016/j.apsoil.2012.02.007].

Marsh, C. J. & R. M. Ewers (2013): A fractal-based sampling design for ecological surveys quantifying β-diversity. – Methods in Ecology and Evolution 4: 63–72 [https://doi.org/10.1111/j.2041-210x.2012.00256.x].

Marshall, V. G. (1972): Comparison of two methods of estimating efficiency of funnel extractors for soil microarthropods. – Soil Biology and Biochemistry 4: 417–426 [https://doi.org/10.1016/0038-0717(72)90056-9].

Martins da Silva, P., M. P. Berg, A. R. M. Serrano, F. Dubs & J. P. Sousa (2012): Environmental factors at different spatial scales governing soil fauna community patterns in fragmented forests. – Landscape Ecology 27: 1337–1349 [https://doi.org/10.1007/s10980-012-9788-2].

Martins da Silva, P.M., M. P. Berg, A. A. da Silva, S. Dias, P. J. Leitão, D. Chamberlain, J. Niemelä, A. R. M. Serrano & J. P. Sousa (2015): Soil fauna through the landscape window: factors shaping surface-and soil-dwelling communities across spatial scales in cork-oak mosaics. – Landscape Ecology 30: 1511–1526 [https://doi.org/10.1007/s10980-015-0206-4].

McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby (2006): Rebuilding community ecology from functional traits. – Trends in Ecology & Evolution 21: 178–185 [https://doi.org/10.1016/j.tree.2006.02.002].

McNabb, D.M., J. Halaj & D. H. Wise (2001): Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. – Pedobiologia 45: 289–297 [https://doi.org/10.1078/0031-4056-00087].

Meid, S., R. Baum, P. Bhatty, P. Grobe, C. Köhler, B. Quast & L. Vogt (2017): Developing a module for generating formalized semantic morphological descriptions for morph∙D∙Base. – Biodiversity Information Science and Standarts 1: e15141 [https://doi.org/10.3897/tdwgproceedings.1.15141].

Metera, E., T. Sakowski, K. Słoniewski & B. Romanowicz (2010): Grazing as a tool to maintain biodiversity of grassland-a review. – Animal Science Papers and Reports 28:

–334.

Newbold, T., L. N. Hudson, S. L. Hill, S. Contu, I. Lysenko,R.A. Senior, L. Börger, D. J. Bennett, A. Choimes, B. Collen & Purvis A. (2015): Global effects of land use on local terrestrial biodiversity. – Nature 520: 45–50.

Newell, K. (1984): Interaction between two decomposer basidiomycetes and a collembolan under Sitka spruce: distribution, abundance and selective grazing. – Soil Biology and Biochemistry 16: 227–233.

Oliverio, A. M., H. Gan, K. Wickings & N. Fierer (2018): A DNA metabarcoding approach to characterize soil arthropod communities. – Soil Biology and Biochemistry 125: 37–43 [https://doi.org/10.1016/j.soilbio.2018.06.026].

Pan, Z.-X. (2015): Two closely related Homidia species (Entomobryidae, Collembola) revealed by morphological and molecular evidence. – Zootaxa 3918: 285–294 [https://doi.org/10.11646/zootaxa.3918.2.9].

Petersen, H. & M. Luxton (1982): A comparative analysis of soil fauna populations and their role in decomposition processes. – Oikos 39: 288–388 [https://doi.org/10.2307/3544689].

Pey, B., J. Nahmani, A. Auclerc, Y. Capowiez, D. Cluzeau, J. Cortet, T. Decaëns, L. Deharveng, F. Dubs, S. Joimel, C. Briard, F. Grumiaux, M.-A. Laporte, A. Pasquet, C. Pelosi, C. Pernin, J.-F. Ponge, S. Salmon, L. Santorufo & M. Hedde (2014): Current use of and future needs for soil invertebrate functional traits in community ecology. – Basic and Applied Ecology 15: 194–206 [https://doi.org/10.1016/j.baae.2014.03.007].

Phillips, L. M., I. Aitkenhead, C. Janion-Scheepers, C. K. King, m. A. McGeoch, U. N. Nielsen, A. Terauds, W. P. A. Liu & S. L. Chown (2020): Basal tolerance but not plasticity gives invasive springtails the advantage in an assemblage setting. – Conservation Physiology 8 [https://doi.org/10.1093/conphys/coaa049].

Pollierer, M. M., T. Larsen, A. Potapov, A. Brückner, M. Heethoff, J. Dyckmans & S. Scheu (2019): Compound‐specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. – Ecological Monographs 89:

e01384 [https://doi.org/10.1002/ecm.1384].

Ponge, J.-F. (1991): Food resources and diets of soil animals in a small area of Scots pine litter. – Geoderma 49: 33–62 [https://doi.org/10.1016/0016-7061(91)90090-G].

Ponge, J.-F. (1993): Biocenoses of Collembola in atlantic temperate grass-woodland ecosystems. – Pedobiologia 37: 223–244.

Ponge, J.-F. (2000): Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. – Biology and Fertility of Soils 32: 508–522.

Ponge, J.-F. (2020): Move or change, an eco-evolutionary dilemma: The case of Collembola. – Pedobiologia 79: 150625 [https://doi.org/10.1016/j.pedobi.2020.150625].

Ponge, J.-F. & S. Salmon (2013): Spatial and taxonomic correlates of species and species trait assemblages in soil invertebrate communities. – Pedobiologia 56: 129–136 [https://doi.org/10.1016/j.pedobi.2013.02.001].

Ponge, J.-F., F. Dubs, S. Gillet, J. Sousa & P. Lavelle (2006): Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes. – Soil Biology and Biochemistry 38: 1158–1161 [https://doi.org/10.1016/j.soilbio.2005.09.004].

Popkin, G. (2019): Data sharing and how it can benefit your scientific career. – Nature 569: 445–447 [https://doi.org/10.1038/d41586-019-01506-x].

Porco, D., A. Bedos & L. Deharveng (2010): Description and DNA barcoding assessment of the new species Deutonura gibbosa (Collembola: Neanuridae: Neanurinae), a common springtail of Alps and Jura. – Zootaxa 2639: 59–68 [https://doi.org/10.11646/zootaxa.2639.1.6].

Porco, D., D. Skarżyński, T. Decaëns, P. D. N. Hebert & L. Deharveng (2014): Barcoding the Collembola of Churchill: a molecular taxonomic reassessment of species diversity in a sub-Arctic area. – Molecular Ecology Resources 14: 249–261 [https://doi.org/10.1111/1755-0998.12172].

Porco, D., A. Bedos, P. Greenslade, C. Janion, D. Skarżyński, M. I. Stevens, B. J. van Vuuren & L. Deharveng (2012): Challenging species delimitation in Collembola: cryptic diversity among common springtails unveiled by DNA barcoding. – Invertebrate Systematics 26: 470–477 [https://doi.org/10.1071/IS12026].

Posthuma, L., R.A. Verweij, B. Widianarko & C. Zonneveld (1993): Life-history patterns in metal-adapted Collembola. – Oikos 67: 235–249 [https://doi.org/10.2307/3545468].

Potapov, A., U. Brose, S. Scheu & A. Tiunov (2019): Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. – The American Naturalist 194: 823–839 [https://doi.org/10.1086/705811].

Potapov, A. M., A. A. Goncharov, E. E. Semenina, A. Y. Korotkevich, S. M. Tsurikov, O. L. Rozanova, A. E. Anichkin, A. G. Zuev, E. S. Samoylova, I. I. Semenyuk, I. V. Yevdokimov & A. V. Tiunov (2017): Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. – European Journal of Soil Biology 82: 88–97 [https://doi.org/10.1016/j.ejsobi.2017.09.001].

Potapov, A. M., A. Yu. Korotkevich & A. V. Tiunov (2018): Non-vascular plants as a food source for litter-dwelling Collembola: Field evidence. – Pedobiologia 66: 11–17 [https://doi.org/10.1016/j.pedobi.2017.12.005].

Potapov, A. M., M. M. Pollierer, S. Salmon, V. Sustr & T.-W. Chen (2020): Multidimensional trophic niche approach: gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. – BioRxiv.

Potapov, A. M., E. E. Semenina, A.Yu. Korotkevich, N. A. Kuznetsova & A. V. Tiunov (2016): Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. – Soil Biology and Biochemistry 101: 20–31 [https://doi.org/10.1016/j.soilbio.2016.07.002].

Potapov, A. M. & A. V. Tiunov (2016): Stable isotope composition of mycophagous collembolans versus mycotrophic plants: Do soil invertebrates feed on mycorrhizal fungi? – Soil Biology and Biochemistry 93: 115–118 [https://doi.org/10.1016/j.soilbio.2015.11.001].

Potapov, A. M., A. V. Tiunov & S. Scheu (2019): Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. – Biological Reviews 94: 37–59 [https://doi.org/10.1111/brv.12434].

Potapov, M. (2001): Synopses on palaearctic Collembola: Isotomidae. Sttatlisches Museum für Natürkunde Görlitz, Görlitz.

Querner, P. & A. Bruckner (2010): Combining pitfall traps and soil samples to collect Collembola for site scale biodiversity assessments. – Applied Soil Ecology 45: 293–297 [https://doi.org/10.1016/j.apsoil.2010.05.005].

Querner, P., A. Bruckner, T. Drapela, D. Moser, J. G. Zaller & T. Frank (2013): Landscape and site effects on Collembola diversity and abundance in winter oilseed rape fields in eastern Austria. – Agriculture, Ecosystems & Environment 164: 145–154 [https://doi.org/10.1016/j.agee.2012.09.016].

Raschmanová, N., V. Šustr, Ľ. Kováč, A. Parimuchová & M. Devetter (2018): Testing the climatic variability hypothesis in edaphic and subterranean Collembola (Hexapoda). – Journal of Thermal Biology 78: 391–400 [https://doi.org/10.1016/j.jtherbio.2018.11.004].

Raymond-Léonard, L. J., D. Gravel & I. T. Handa (2019): A novel set of traits to describe Collembola mouthparts: taking a bite out of the broad chewing mandible classification. – Soil Biology and Biochemistry 138: 107608 [https://doi.org/10.1016/j.soilbio.2019.107608].

Riedel, A., K. Sagata, Y. R. Suhardjono, R. Tänzler & M. Balke (2013): Integrative taxonomy on the fast track - towards more sustainability in biodiversity research. – Frontiers in Zoology 10: 15 [https://doi.org/10.1186/1742-9994-10-15].

Rosenstiel, T. N., E. E. Shortlidge, A. N. Melnychenko,

J. F. Pankow & S. M. Eppley (2012): Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. – Nature 489: 431–433.

Rossi, R. E., D. J. Mulla, A. G. Journel & E. H. Franz (1992): Geostatistical tools for modeling and interpreting ecological spatial dependence. – Ecological Monographs 62: 277–314 [https://doi.org/10.2307/2937096].

Ruess, L. & P. M. Chamberlain (2010): The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. – Soil Biology and Biochemistry 42: 1898–1910 [https://doi.org/10.1016/j.soilbio.2010.07.020].

Rusek, J. (1998): Biodiversity of Collembola and their functional role in the ecosystem. – Biodiversity and Conservation 7: 1207–1219 [https://doi.org/10.1023/A:1008887817883].

Rusek, J. (2007): A new classification of Collembola and Protura life forms. – In: Tajovský, K., J. Schlaghamerský & V. Pižl (eds): Contributions To Soil Zoology in Central Europe. – ISB BC AS CR: 109–115.

Russell, D. J. (2008): Metacommunity responses of soil Collembola to inundation intensity in the Upper Rhine Valley. – Peckiana 5: 127–143.

Russell, D. J. & V. Gergócs (2019): Forest-management types similarly influence soil collembolan communities throughout regions in Germany – A data bank analysis. – Forest Ecology and Management 434: 49–62 [https://doi.org/10.1016/j.foreco.2018.11.050].

Rusterholz, H.-P., J.-A. Salamon, R. Ruckli & B. Baur (2014): Effects of the annual invasive plant Impatiens glandulifera on the Collembola and Acari communities in a deciduous forest. – Pedobiologia 57: 285–291 [https://doi.org/10.1016/j.pedobi.2014.07.001].

Salmon, S. & J.-F. Ponge (2001): Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus Nitidus (Collembola: Entomobryidae). – Soil Biology and Biochemistry 33: 1959–1969 [https://doi.org/10.1016/S0038-0717(01)00129-8].

Salmon, S. & J.-F. Ponge (2012): Species traits and habitats in springtail communities: A regional scale study. – Pedobiologia 55: 295–301 [https://doi.org/10.1016/j.pedobi.2012.05.003].

Salmon, S., J.-F. Ponge, S. Gachet, L. Deharveng, N. Lefebvre & F. Delabrosse (2014): Linking species, traits and habitat characteristics of Collembola at European scale. – Soil Biology and Biochemistry 75: 73–85 [https://doi.org/10.1016/j.soilbio.2014.04.002].

Salmon, S., S. Rebuffat, S. Prado, M. Sablier, C. D’Haese, J.-S. Sun & J.-F. Ponge (2019): Chemical communication in springtails: a review of facts and perspectives. – Biology and Fertility of Soils 55: 425–438 [https://doi.org/10.1007/s00374-019-01365-8].

Saraeva, A.K., M. B. Potapov & N. A. Kuznetsova (2015): Different-scale distribution of collembola in homogenous ground vegetation: Stability of parameters in space and time. – Entomological Review 95: 699–714 [https://doi.org/10.1134/S0013873815060032].

Scheu, S. & M. Folger (2004): Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. – Functional Ecology 18: 94–102 [https://doi.org/10.1046/j.0269-8463.2004.00807.x].

Schlick-Steiner, B. C., F. M. Steiner, B. Seifert, C. Stauffer, E. Christian & R. H. Crozier (2010): Integrative taxonomy: a multisource approach to exploring biodiversity. – Annual Review of Entomology 55: 421–438 [https://doi.org/10.1146/annurev-ento-112408-085432].

Schneider, K. & M. Maraun (2009): Top-down control of soil microarthropods – Evidence from a laboratory experiment. – Soil Biology and Biochemistry 41: 170–175 [https://doi.org/10.1016/j.soilbio.2008.10.013].

Schneider, C., C. Cruaud & C. A. D’Haese (2011): Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola). – Soil Organisms 83: 383–398.

Semenina, E. E., A. E. Anichkin, O. L. Shilenkova, S. G. Ermilov & A. V. Tiunov (2015): Rapid extraction of invertebrates from tropical forest litter using modified Winkler apparatus. – Journal of Tropical Ecology 31: 191–194.

Shaw, P. & M. Usher (1996): Edaphic Collembola of lodgepole pine Pinus contorta plantations in Cumbria, UK. – European Journal of Soil Biology 32: 89–98.

Shveenkova, Y. (2011): Springtail communities (Collembola, Hexapoda). – In: Tiunov A.V. (ed): Structure and Functions of Soil Communities of a Monsoon Tropical Forest (Cat Tien National Park, Southern Vietnam). – KMK Scientific Press, Moscow: 131–147.

Siddiky, M. R. K., J. Kohler, M. Cosme & M. C. Rillig (2012): Soil biota effects on soil structure: Interactions between arbuscular mycorrhizal fungal mycelium and collembola. – Soil Biology and Biochemistry 50: 33–39 [https://doi.org/10.1016/j.soilbio.2012.03.001].

Soto-Adames, F. N. (2002): Molecular phylogeny of the Puerto Rican Lepidocyrtus and Pseudosinella (Hexapoda: Collembola), a validation of Yoshii’s “color pattern species.” – Molecular Phylogenetics and Evolution 25: 27–42 [https://doi.org/10.1016/S1055-7903(02)00250-6].

Sousa, J. P., T. Bolger, M. M. da Gama, T. Lukkari, J.-F. Ponge, C. Simón, G. Traser, A. J. Vanbergen, A. Brennan, F. Dubs, E. Ivitis, A. Keating, S. Stofer & A. D. Watt (2006): Changes in Collembola richness and diversity along a gradient of land-use intensity: A pan European study. – Pedobiologia 50: 147–156 [https://doi.org/10.1016/j.pedobi.2005.10.005].

Sterzyńska, M., J. Shrubovych & P. Nicia, (2017): Impact of plant invasion (Solidago gigantea L.) on soil mesofauna in a riparian wet meadows. – Pedobiologia 64: 1–7 [https://doi.org/10.1016/j.pedobi.2017.07.004].

Sticht, C., S. Schrader, A. Giesemann & H.-J. Weigel (2008): Atmospheric CO2 enrichment induces life strategy- and species-specific responses of collembolans in the rhizosphere of sugar beet and winter wheat. – Soil Biology and Biochemistry, Special Section: Functional Microbial Ecology: Molecular Approaches to Microbial Ecology and Microbial Habitats 40: 1432–1445 [https://doi.org/10.1016/j.soilbio.2007.12.022].

Straalen, N. M. van & P. C. Rijninks (1982): Efficiency of Tullgren apparatus with respect to interpreting seasonal changes in age structure of soil arthropod populations. – Pedobiologia 24: 197–209.

Ströbel, B., S. Schmelzle,, N. Blüthgen & M. Heethoff (2018): An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging. – ZooKeys 759: 1–27 [https://doi.org/10.3897/zookeys.759.24584].

Sun, X., A. Bedos & L. Deharveng (2018): Unusually low genetic divergence at COI barcode locus between two species of intertidal Thalassaphorura (Collembola: Onychiuridae). – PeerJ 6 [https://doi.org/10.7717/peerj.5021].

Sun, X., F. Zhang, Y. Ding, T. W. Davies, Y. Li & D. Wu (2017): Delimiting species of Protaphorura (Collembola: Onychiuridae): integrative evidence based on morphology, DNA sequences and geography. – Scientific Reports 7: 8261 [https://doi.org/10.1038/s41598-017-08381-4].

Swift, M. J., O. W. Heal & J. M. Anderson (1979): Decomposition in terrestrial ecosystems. University of California Press, Berkeley.

Szeptycki, A. (1979): Chaetotaxy of the Entomobryidae and its Phylogenetical Significance. Morpho-systematic Studies on Collembola. IV.,(Polska Akademia Nauk, Zaklad Zoologii Systematycznej i Doswiadczalnej, Panstwowe Wydawnictwo Naukowe: Warszawa-Kraków, Poland.). – Doswiadczalnej. Krakow 218.

Takeda, H. & T. Abe (2001): Templates of food–habitat resources for the organization of soil animals in temperate and tropical forests. – Ecological Research 16: 961–973 [https://doi.org/10.1046/j.1440-1703.2001.00450.x].

Tebbe, C. C., A. B. Czarnetzki & T. Thimm (2006): Collembola as a habitat for microorganisms. – In: König, H. & A. Varma (eds): Intestinal Microorganisms of Termites and Other Invertebrates. – Springer: 133–153.

Terauds, A., S. L. Chown & D. M. Bergstrom (2011): Spatial scale and species identity influence the indigenous–alien diversity relationship in springtails. – Ecology 92: 1436–1447 [https://doi.org/10.1890/10-2216.1].

Thakur, M. P. & S. Geisen(2019): Trophic regulations of the soil microbiome. – Trends in Microbiology S0966842X19301027 [https://doi.org/10.1016/j.tim.2019.04.008].

Thibaud, J. (2013): Essay on the state of knowledge of collembolan diversity in the African-Malgasy Region. – Russian Entomological Journal 22: 233–248.

Thibaud, J.-M., H.-J. Schulz & M. M. da Gama Assalina (2004): Synopses on Palaearctic Collembola: Hypogastruridae. Sttatlisches Museum für Natürkunde Görlitz, Görlitz.

Tully, T. & R. Ferrière (2008): Reproductive flexibility: Genetic variation, genetic costs and long-term evolution in a Collembola. – PLOS ONE 3: e3207 [https://doi.org/10.1371/journal.pone.0003207].

Turnbull, M. S. & S. Stebaeva (2019): Collembola of Canada. – ZooKeys 819: 187–195 [https://doi.org/10.3897/zookeys.819.23653].

van Straalen, N. M. (1989): Production and biomass turnover in two populations of forest floor Collembola. – Netherlands Journal of Zoology 39: 156–168.

van Straalen, N. M., T.B.A. Burghouts, M. J. Doornhof, G. M. Groot, M. P. M. Janssen, E. N. G. van Joosse, J. H. Meerendonk, J. P. J. J. Theeuwen, H. A. Verhoef & H. r. Zoomer (1987): Efficiency of lead and cadmium excretion in populations of orchesella cincta (Collembola) from various contaminated forest soils. – Journal of Applied Ecology 24: 953–968 [https://doi.org/10.2307/2403992].

Vandewalle, M., F. de Bello, M. P. Berg, T. Bolger, S. Dolédec, F. Dubs, C. K. Feld, R. Harrington, P. A. Harrison, S. Lavorel, P. M. Silva, M. da, Moretti, J. Niemelä, P. Santos, T. Sattler, J. P. Sousa, M. T. Sykes, A. J. Vanbergen & B. A. Woodcock (2010): Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. – Biodiversity and Conservation 19: 2921–2947 [https://doi.org/10.1007/s10531-010-9798-9].

Vellend, M. (2010): Conceptual synthesis in community ecology. – The Quarterly Review of Biology 85: 183–206 [https://doi.org/10.1086/652373].

Verhoef, H. A. & C. J. Nagelkerke (1977): Formation and ecological significance of aggregations in Collembola: An experimental study. – Oecologia 31: 215–226 [https://doi.org/10.1007/BF00346922].

Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier (2007): Let the concept of trait be functional! – Oikos 116: 882–892 [https://doi.org/10.1111/j.0030-1299.2007.15559.x].

Wall, D.H., M. A. Bradford, M. G. St. John, J. A. Trofymow, V. Behan-Pelletier, V., Bignell, D.E., Dangerfield, J.M., Parton, W.J., Rusek, W. Voigt, V. Wolters, H. Z. Gardel, F. O. Ayuke, R. Bashford, O. I. Beljakova, P. J. Bohlen, A. Brauman, S. Flemming, J. R. Henschel, D. L. Johnson, T. H. Jones, M. Kovarova, J. M. Kranabetter, L. Kutny, K.-C. Lin, M. Maryati, D. Masse, A. Pokarzhevskii, H. Rahman, M. G. Sabará, J.-A. Salamon, M. J. Swift, A. Varela, H. L. Vasconcelos, D. White & X. Zou (2008): Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. – Global Change Biology 14: 2661–2677 [https://doi.org/10.1111/j.1365-2486.2008.01672.x].

Wallace, M. M. H. (1972): A portable power-operated apparatus for collecting epigaeic Collembola and Acari. – Australian Journal of Entomology 11: 261–263 [https://doi.org/10.1111/j.1440-6055.1972.tb01629.x].

Whalley, P. & E. A. Jarzembowski (1981): A new assessment of Rhyniella, the earliest known insect, from the Devonian of Rhynie, Scotland. – Nature 291: 317-317.

White, H. J., L. León‐Sánchez,V. J. Burton, E. K. Cameron, T. Caruso, L. Cunha, T. Dirilgen, S. D. Jurburg, R. Kelly, D. Kumaresan, R. Ochoa‐Hueso, A. Ordonez, H. R. P. Phillips, I. Prieto, O. Schmidt & P. Caplat (2020): Methods and approaches to advance soil macroecology. – Global Ecology and Biogeography 29: 13156 [https://doi.org/10.1111/geb.13156].

Widenfalk, L. A., J. Bengtsson, Å. Berggren, K. Zwiggelaar, E. Spijkman, F. Huyer-Brugman & M. P. Berg (2015): Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation. – Oecologia 179: 537–549 [https://doi.org/10.1007/s00442-015-3345-z].

Widenfalk, L. A., A. Malmström, M. P. Berg & J. Bengtsson (2016): Small-scale Collembola community composition in a pine forest soil – Overdispersion in functional traits indicates the importance of species interactions. – Soil Biology and Biochemistry 103: 52–62 [https://doi.org/10.1016/j.soilbio.2016.08.006].

Wieczorek, J., D. Bloom, R. Guralnick, S. Blum, M. Döring, R. Giovanni, T. Robertson & D. Vieglais (2012): Darwin core: An evolving community-developed biodiversity data standard. – PLOS ONE 7: e29715 [https://doi.org/10.1371/journal.pone.0029715].

Wilkinson, M. D., M. Dumontier, M., J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran, A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P.A.C.’t Hoen, R. Hooft, T. Kuhn, R. Kok, J., Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. A. Velterop, P. Waagmeester, K. Wittenburg, J. Wolstencroft, J. Zhao & B. Mons (2016): The FAIR Guiding Principles for scientific data management and stewardship. – Scientific Data 3: 160018 [https://doi.org/10.1038/sdata.2016.18].

Winkler, H. & C. Kampichler (2000): Local and regional species richness in communities of surface-dwelling grassland Collembola: indication of species saturation. – Ecography 23: 385–392 [https://doi.org/10.1111/j.1600-0587.2000.tb00295.x].

Witteveen, J. & E. N. G. Joosse (1987): Growth, reproduction and mortality in marine littoral Collembola at different salinities. – Ecological Entomology 12: 459–469 [https://doi.org/10.1111/j.1365-2311.1987.tb01027.x].

Xiong, Y., Y. Gao, W. Yin & Y. Luan, Y. (2008): Molecular phylogeny of Collembola inferred from ribosomal RNA genes. – Molecular Phylogenetics and Evolution 49: 728–735 [https://doi.org/10.1016/j.ympev.2008.09.007].

Yin, R., I. Gruss, N. Eisenhauer, P. Kardol, M. P. Thakur, A. Schmidt, Z. Xu, J. Siebert, C. Zhang, G.-L.Wu & M. Schädler (2019): Land use modulates the effects of climate change on density but not community composition of Collembola. – Soil Biology and Biochemistry 138: 107598 [https://doi.org/10.1016/j.soilbio.2019.107598].

Yosii, R. (1960): Studies on the Collembolan genus Hypogastrura. – The American Midland Naturalist 64: 257–281 [https://doi.org/10.2307/2422661].

Zaitsev, A. S., N. M. van Straalen & M. P. Berg (2013): Landscape geological age explains large scale spatial trends in oribatid mite diversity. – Landscape Ecology 28: 285–296 [https://doi.org/10.1007/s10980-012-9834-0].

Zeppelini, D., A. Dal Molin, C. J. E. Lamas, C. Sarmiento, C. A. Rheims, D. R. R. Fernandes, E. F. B. Lima, E. N. Silva, F. Carvalho-Filho, Ľ. Kováč, J. Montoya-Lerma, O. T. Moldovan, P. G. B. Souza-Dias, P. R. Demite, R. M. Feitosa, S. L. Boyer, W. M. Weiner & W. C. Rodrigues (2020): The dilemma of self-citation in taxonomy. – Nature Ecology & Evolution [https://doi.org/10.1038/s41559-020-01359-y].

Zhang, B., T.-W. Chen, E. Mateos, S. Scheu & I. Schaefer (2018): Cryptic species in Lepidocyrtus lanuginosus (Collembola: Entomobryidae) are sorted by habitat type. – Pedobiologia 68: 12–19 [https://doi.org/10.1016/j.pedobi.2018.03.001].

Zhang, F., Z. Chen, R.-R. Dong, L. Deharveng, M. I. Stevens, Y.-H. Huang & C.-D. Zhu (2014): Molecular phylogeny reveals independent origins of body scales in Entomobryidae (Hexapoda: Collembola). – Molecular Phylogenetics and Evolution 70: 231–239 [https://doi.org/10.1016/j.ympev.2013.09.024].

Zhang, F., Y. Ding, C. Zhu, X. Zhou, M. C. Orr, S. Scheu & Y.-X. Luan (2019): Phylogenomics from low-coverage whole-genome sequencing. – Methods in Ecology and Evolution 10: 507–517 [https://doi.org/10.1111/2041-210X.13145].

Zuev, A., K. Heidemann, V. Leonov, I. Schaefer, S. Scheu, A. Tanasevitch, A. Tiunov, S. Tsurikov & A. Potapov (2020): Different groups of ground‐dwelling spiders share similar trophic niches in temperate forests. – Ecological Entomology: een.12918 [https://doi.org/10.1111/een.12918].

Downloads

Published

2020-11-30

Issue

Section

ARTICLES

How to Cite

Towards a global synthesis of Collembola knowledge – challenges and potential solutions . (2020). Soil Organisms, 92(3), 161–188. https://doi.org/10.25674/so92iss3pp161