Trait concepts, categories, and databases in soil invertebrate ecology – ordering the mess
DOI:
https://doi.org/10.25674/431Keywords:
functional traits, soil fauna, functional ecology, community ecology, terminologyAbstract
The trait-based approach is increasingly used for soil invertebrates. Complementary to the taxonomy based approach, the trait-based approach can provide a more mechanistic understanding of the responses of organisms to environmental disturbances and of their effects on soil functioning. However, this approach has several limitations linked to the conceptual development of functional traits. There is a large ambiguity and variability in using the term "functional traits” by zoologists and ecologists working with soil invertebrates. In this study, we used a questionnaire and literature scanning to review the practical use of functional traits concept in soil ecology over the last decade. We clarifed and expanded the functional trait definition as "A functional trait is a measurable characteristic of an individual organism or its colony that has a clear link to the organism's fitness and/or its effect on other organisms and/or the environment”. We also reviewed existing trait databases showing a high amount, but also high heterogeneity and low accessibility of data on the functional traits of soil invertebrates. We suggest synthesising existing trait data and databases, using the functional trait-based approach consistently and reproducibly, and disseminating it to facilitate mechanistic research in soil ecology.
Downloads
References
Arnold, S.J. (1983): Morphology, Performance and Fitness. American Zoologist 23: 347–361. https://doi.org/10.1093/icb/23.2.347.
Auclerc, A., Beaumelle, L., Barantal, S., Chauvat, M., Cortet, J., De Almeida, T., Dulaurent, A.-M., Dutoit, T., Joimel, S., Séré, G. & Blight, O. (2022): Fostering the use of soil invertebrate traits to restore ecosystem functioning. Geoderma 424: 116019. https://doi.org/10.1016/j.geoderma.2022.116019.
Beaumelle, L., Lamy, I., Cheviron, N. & Hedde, M. (2014): Is there a relationship between earthworm energy reserves and metal availability after exposure to field-contaminated soils? Environmental Pollution 191: 182–189. https://doi.org/10.1016/j.envpol.2014.04.021.
Bennett, J.M., Calosi, P., Clusella-Trullas, S., Martínez, B., Sunday, J., Algar, A.C., Araújo, M.B., Hawkins, B.A., Keith, S., Kühn, I. & et al. (2018): GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data 5: 180022. https://doi.org/10.1038/sdata.2018.22.
Bokhorst, S., Phoenix, G.K., Bjerke, J.W., Callaghan, T.V., Huyer-Brugman, F., Berg & M.P. (2012): Extreme winter warming events more negatively impact small rather than large soil invertebrates: shift in community composition explained by traits not taxa. Global Change Biology 18: 1152–1162. https://doi.org/10.1111/j.1365-2486.2011.02565.x.
Bonfanti, J., Hedde, M., Cortet, J., Krogh, P.H., Larsen, K.S. & Holmstrup, M. (2022): Communities of Collembola show functional resilience in a long-term field experiment simulating climate change. Pedobiologia 90: 150789. https://doi.org/10.1016/j.pedobi.2022.150789.
Bonfanti, J., Hedde, M., Joimel, S., Krogh, P.H., Violle, C., Nahmani, J. & Cortet, J. (2018): Intraspecific body size variability in soil organisms at a European scale: Implications for functional biogeography. Functional Ecology. https://doi.org/10.1111/1365-2435.13194.
Bonte, D. & Dahirel, M. (2017): Dispersal: a central and independent trait in life history. Oikos 126: 472–479. https://doi.org/10.1111/oik.03801.
Bottinelli, N. & Capowiez, Y. (2021): Earthworm ecological categories are not functional groups. Biology and Fertility of Soils 57: 329–331. https://doi.org/10.1007/s00374-020-01517-1.
Briones, M.J.I. (2014): Soil invertebrates and soil functions: a jigsaw puzzle. Frontiers in Environmental Science 2. https://doi.org/10.3389/fenvs.2014.00007.
Brousseau, P.-M., Gravel, D. & Handa, I.T. (2018): On the development of a predictive functional trait approach for studying terrestrial arthropods. Journal of Animal Ecology 87: 1209–1220. https://doi.org/10.1111/1365-2656.12834.
Burkhardt, U., Russell, D.J., Decker, P., Döhler, M., Höfer, H., Lesch, S., Rick, S., Römbke, J., Trog, C., Vorwald, J., Wurst, E. & Xylander, W.E.R. (2014): The Edaphobase project of GBIF-Germany—A new online soil-zoological data warehouse. Applied Soil Ecology, XVI International Colloquium on Soil Zoology & XIII International Colloquium on Apterygota, Coimbra, 2012 – Selected papers 83: 3–12. https://doi.org/10.1016/j.apsoil.2014.03.021.
Capowiez, Y., Marchán, D., Decaëns, T., Hedde, M., Bottinelli, N. (2024): Let earthworms be functional - Definition of new functional groups based on their bioturbation behavior. Soil Biology and Biochemistry 188: 109209. https://doi.org/10.1016/j.soilbio.2023.109209.
Cébron, A., Borreca, A., Beguiristain, T., Biache, C., Faure, P. (2022): Taxonomic and functional trait-based approaches suggest that aerobic and anaerobic soil microorganisms allow the natural attenuation of oil from natural seeps. Scientific Reports 12: 7245. https://doi.org/10.1038/s41598-022-10850-4.
Chase, J.M. & Leibold, M.A. (2003): Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press. https://doi.org/10.7208/chicago/9780226101811.001.0001.
Chassain, J., Joimel, S. & Vieublé Gonod, L. (2023): Collembola taxonomic and functional diversity in conventional, organic and conservation cropping systems. European Journal of Soil Biology 118: 103530. https://doi.org/10.1016/j.ejsobi.2023.103530.
Chen, T., Sandmann, P., Schaefer, I. & Scheu, S. (2017) Neutral lipid fatty acid composition as trait and constraint in Collembola evolution. Ecology and Evolution 7: 9624–9638. https://doi.org/10.1002/ece3.3472.
Chin, A.R.O., Guzmán-Delgado, P., Görlich, A. & HilleRisLambers, J. (2023): Towards multivariate functional trait syndromes: Predicting foliar water uptake in trees. Ecology n/a, e4112. https://doi.org/10.1002/ecy.4112.
Dalos, J., Royauté, R., Hedrick, A.V., Dochtermann & N.A. (2022): Phylogenetic conservation of behavioural variation and behavioural syndromes. Journal of Evolutionary Biology 35: 311–321. https://doi.org/10.1111/jeb.13935.
D’Annibale, A., Sechi, V., Larsen, T., Christensen, S., Krogh, P.H. & Eriksen, J. (2017): Does introduction of clover in an agricultural grassland affect the food base and functional diversity of Collembola? Soil Biology and Biochemistry 112: 165–176. https://doi.org/10.1016/j.soilbio.2017.05.010.
Dawson, S.K., Carmona, C.P., González-Suárez, M., Jönsson, M., Chichorro, F., Mallen-Cooper, M., Melero, Y., Moor, H., Simaika, J.P. & Duthie, A.B. (2021): The traits of “trait ecologists”: An analysis of the use of trait and functional trait terminology. Ecology and Evolution 11: 16434–16445. https://doi.org/10.1002/ece3.8321.
De Almeida, T., Arnan, X., Capowiez, Y., Hedde, M., Mesléard, F., Dutoit, T. & Blight, O. (2024): Ants in restoration ecology: Why, what’s and the way forward. Land Degradation & Development 35: 1284–1295. https://doi.org/10.1002/ldr.5006.
Díaz, S., Purvis, A., Cornelissen, J.H.C., Mace, G.M., Donoghue, M.J., Ewers, R.M., Jordano, P. & Pearse, W.D. (2013): Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution 3: 2958–2975. https://doi.org/10.1002/ece3.601.
Elizalde, L., Arbetman, M., Arnan, X., Eggleton, P., Leal, I.R., Lescano, M.N., Saez, A., Werenkraut, V. & Pirk, G.I. (2020): The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biological Reviews 95: 1418–1441. https://doi.org/10.1111/brv.12616.
Ellers, J., Berg, M.P., Dias, A.T.C., Fontana, S., Ooms, A. & Moretti, M. (2018): Diversity in form and function: Vertical distribution of soil invertebrates mediates multidimensional trait variation. Journal of Animal Ecology 87: 933–944. https://doi.org/10.1111/1365-2656.12838.
Gallagher, R.V., Falster, D.S., Maitner, B.S., Salguero-Gómez, R., Vandvik, V., Pearse, W.D., Schneider, F.D., Kattge, J., Poelen, J.H., Madin, J.S. & et al. (2020): Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology & Evolution 4: 294–303. https://doi.org/10.1038/s41559-020-1109-6.
Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C. & et al. (2010): Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 11: 97–105. https://doi.org/10.1016/j.baae.2009.12.001.
Glenk, K., McVittie, A. & Moran, D. (2012): Soil and soil organic carbon within an ecosystem service approach linking biophyscial and economic data (No. Deliverable D3.1). Organization name of lead contractor for this deliverable: Scottish Agricultural College (SAC).
Gravel, D., Albouy, C. & Thuiller, W. (2016): The meaning of functional trait composition of food webs for ecosystem functioning. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150268. https://doi.org/10.1098/rstb.2015.0268.
Handa, I.T., Raymond-Léonard, L., Boisvert-Marsh, L., Dupuch, A. & Aubin, I. (2017): CRITTER : Canadian Repository of Invertebrate Traits and Trait-like Ecological Records. Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario, Canada.
Hedde, M., Blight, O., Briones, M.J.I., Bonfanti, J., Brauman, A., Brondani, M., Calderón Sanou, I., Clause, J., Conti, E., Cortet, J., Decaëns, T., Erktan, A., Gérard, S., Goulpeau, A., Iannelli, M., Joimel-Boulanger, S., Jouquet, P., Le Guillarme, N., Marsden, C., Martinez Almoyna, C., Mulder, C., Perrin, W., Pétillon, J., Pey, B., Potapov, A.M., Si-moussi, S., Thuiller, W., Trap, J., Vergnes, A., Zaitsev, A., Capowiez, Y. (2022): A common framework for developing robust soil invertebrates classifications. Geoderma 426: 116073. https://doi.org/10.1016/j.geoderma.2022.116073.
Hedde, Mickael, van Oort, F., Boudon, E., Abonnel, F. & Lamy, I. (2013): Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils. Biomass and Bioenergy 55: 122–129. https://doi.org/10.1016/j.biombioe.2013.01.016.
Hedde, Mickaël, van Oort, F., Renouf, E., Thénard, J. & Lamy, I. (2013): Dynamics of soil invertebrates after plantation of perennial energy crops on polluted soils. Applied Soil Ecology 66: 29–39. https://doi.org/10.1016/j.apsoil.2013.01.012.
Hishi, T., Fujii, S., Saitoh, S., Yoshida, T., Hasegawa & M. (2019): Taxonomy, distribution and trait data sets of Japanese Collembola. Ecological Research 34: 444–445. https://doi.org/10.1111/1440-1703.12022.
Hölldobler, B. & Wilson, E.O. (2009); The Superorganism – The Beauty, Elegance and Strangeness of Insect Societies, 1er édition. ed. W. W. Norton & Company, New York.
Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. (2014): Carabids.org – a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conservation and Diversity 7: 195–205. https://doi.org/10.1111/icad.12045.
Jeliazkov, A., Mijatovic, D., Chantepie, S., Andrew, N., Arlettaz, R., Barbaro, L., Barsoum, N., Bartonova, A., Belskaya, E., Bonada, N. & et al. (2020): A global database for metacommunity ecology, integrating species, traits, environment and space. Scientific Data 7: 1–15. https://doi.org/10.1038/s41597-019-0344-7.
Joimel, S., Schwartz, C., Bonfanti, J., Hedde, M., Krogh, P.H., Pérès, G., Pernin, C., Rakoto, A., Salmon, S., Santorufo, L. & Cortet, J. (2021): Functional and Taxonomic Diversity of Collembola as Complementary Tools to Assess Land Use Effects on Soils Biodiversity. Frontiers in Ecology and Evolution 9: 630919. https://doi.org/10.3389/fevo.2021.630919.
Jones, M.B., Schildhauer, M.P., Reichman, O.J. & Bowers, S. (2006): The New Bioinformatics: Integrating Ecological Data from the Gene to the Biosphere. Annual Review of Ecology, Evolution, and Systematics 37: 519–544. https://doi.org/10.1146/annurev.ecolsys.37.091305.110031.
Jouquet, P., Harit, A., Hervé, V., Moger, H., Carrijo, T., Donoso, D.A., Eldridge, D., Ferreira da Cunha, H., Choosai, C., Janeau, J.-L. & et al. (2022): The impact of termites on soil sheeting properties is better explained by environmental factors than by their feeding and building strategies. Geoderma 412: 115706. https://doi.org/10.1016/j.geoderma.2022.115706.
Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., Garnier, E., Westoby, M., Reich, P.B., Wright, I.J.& et al. (2011): TRY - a global database of plant traits. Global Change Biology 17: 2905–2935.
Kearney, M.R., Jusup, M., McGeoch, M.A., Kooijman, S.A.L.M. & Chown, S.L. (2021): Where do functional traits come from? The role of theory and models. Functional Ecology 35: 1385–1396. https://doi.org/10.1111/1365-2435.13829.
Keller, L.: 1995. Social life: the paradox of multiple-queen colonies. Trends in Ecology & Evolution 10: 355–360. https://doi.org/10.1016/S0169-5347(00)89133-8.
Kibblewhite, M.G., Ritz, K. & Swift, M.J. (2008): Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 685–701. https://doi.org/10.1098/rstb.2007.2178.
Kreider, J.J., Chen, T., Hartke, T.R., Buchori, D., Hidayat, P., Nazarreta, R., Scheu, S. & Drescher, J. (2021): Rainforest conversion to monocultures favors generalist ants with large colonies. Ecosphere 12. https://doi.org/10.1002/ecs2.3717.
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P. & Rossi, J.-P. (2006): Soil invertebrates and ecosystem services. European Journal of Soil Biology 42, Supplement 1, S3–S15. https://doi.org/10.1016/j.ejsobi.2006.10.002.
Lavorel, S. & Garnier, E. (2002): Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556.
Macías-Hernández, N., Ramos, C., Domènech, M., Febles, S., Santos, I., Arnedo, M.A., Borges, P.A.V., Emerson, B.C. & Cardoso, P. (2020): A database of functional traits for spiders from native forests of the Iberian Peninsula and Macaronesia. Biodiversity Data Journal 8, e49159. https://doi.org/10.3897/BDJ.8.e49159.
Makkonen, M., Berg, M.P., van Hal, J.R., Callaghan, T.V., Press, M.C. & Aerts, R. (2011): Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biology and Biochemistry 43: 377–384. https://doi.org/10.1016/j.soilbio.2010.11.004.
Marliac, G., Mazzia, C., Pasquet, A., Cornic, J.-F., Hedde, M. & Capowiez, Y. (2016): Management diversity within organic production influences epigeal spider communities in apple orchards. Agriculture, Ecosystems & Environment 216: 73–81. https://doi.org/10.1016/j.agee.2015.09.026.
Meyer, A., Alric, B., Dézerald, O., Billoir, E., Coulaud, R., Larras, F., Mondy, C.P. & Usseglio-Polatera, P. (2022): Linking Micropollutants to Trait Syndromes across Freshwater Diatom, Macroinvertebrate, and Fish Assemblages. Water 14: 1184. https://doi.org/10.3390/w14081184.
Michener, W.K. (2006): Meta-information concepts for ecological data management. Ecological Informatics 1: 3–7. https://doi.org/10.1016/j.ecoinf.2005.08.004.
Michener, W.K., Beach, J.H., Jones, M.B., Ludäscher, B., Pennington, D.D., Pereira, R.S., Rajasekar, A., Schildhauer & M. (2007): A knowledge environment for the biodiversity and ecological sciences. Journal of Intelligent Information Systems 29: 111–126. https://doi.org/10.1007/s10844-006-0034-8.
Middleton-Welling, J., Dapporto, L., García-Barros, E., Wiemers, M., Nowicki, P., Plazio, E., Bonelli, S., Zaccagno, M., Šašić, M., Liparova & et al. (2020): A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea. Scientific Data 7: 351. https://doi.org/10.1038/s41597-020-00697-7.
Minor, M.A., Ermilov, S.G. & Tiunov, A.V. (2017): Taxonomic resolution and functional traits in the analysis of tropical oribatid mite assemblages. Experimental and Applied Acarology 73: 365–381. https://doi.org/10.1007/s10493-017-0190-2.
Mlambo, M.C. (2014): Not all traits are ‘functional’: insights from taxonomy and biodiversity-ecosystem functioning research. Biodiversity and Conservation 23: 781–790. https://doi.org/10.1007/s10531-014-0618-5.
Moretti, M., Dias, A.T.C., de Bello, F., Altermatt, F., Chown, S.L., Azcárate, F.M., Bell, J.R., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J.P., Ellers, J. & Berg, M.P. (2016): Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology n/a-n/a. https://doi.org/10.1111/1365-2435.12776.
Morgado, R.G., Loureiro, S. & González-Alcaraz, M.N. (2018): Chapter 3 - Changes in Soil Ecosystem Structure and Functions Due to Soil Contamination. In: Duarte, A.C., Cachada, A., Rocha-Santos, T. (Eds.), Soil Pollution. Academic Press, pp. 59–87. https://doi.org/10.1016/B978-0-12-849873-6.00003-0.
Mulder, C. & Vonk, J.A. (2011): Trait Variation in Soil Nematodes. The Bulletin of the Ecological Society of America 92: 383–386. https://doi.org/10.1890/0012-9623-92.4.383.
Olker, J.H., Elonen, C.M., Pilli, A., Anderson, A., Kinziger, B., Erickson, S., Skopinski, M., Pomplun, A., LaLone, C.A., Russom, C.L. & Hoff, D. (2022): The ECOTOXicology Knowledgebase: A Curated Database of Ecologically Relevant Toxicity Tests to Support Environmental Research and Risk Assessment. Environmental Toxicology and Chemistry 41: 1520–1539. https://doi.org/10.1002/etc.5324.
Parr, C.L., Dunn, R.R., Sanders, N.J., Weiser, M.D., Photakis, M., Bishop, T.R., Fitzpatrick, M.C., Arnan, X., Baccaro, F., Brandão, C.R.F. & et al. (2017): GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity 10: 5–20. https://doi.org/10.1111/icad.12211.
Pelosi, C., Pey, B., Caro, G., Cluzeau, D., Peigné, J., Bertrand, M. & Hedde, M. (2016): Dynamics of earthworm taxonomic and functional diversity in ploughed and no-tilled cropping systems. Soil and Tillage Research 156: 25–32. https://doi.org/10.1016/j.still.2015.07.016.
Pelosi, C., Pey, B., Hedde, M., Caro, G., Capowiez, Y., Guernion, M., Peigné, J., Piron, D., Bertrand, M. & Cluzeau, D. (2014): Reducing tillage in cultivated fields increases earthworm functional diversity. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2013.10.005.
Petchey, O.L. & Gaston, K.J. (2006): Functional diversity: back to basics and looking forward. Ecology Letters 9: 741–758.
Pey, B., Laporte, M.-A., Nahmani, J., Auclerc, A., Capowiez, Y., Caro, G., Cluzeau, D., Cortet, J., Decaëns, T., Dubs, F.& et al. (2014a): A Thesaurus for Soil Invertebrate Trait-Based Approaches. PLoS ONE 9, e108985. https://doi.org/10.1371/journal.pone.0108985.
Pey, B., Nahmani, J., Auclerc, A., Capowiez, Y., Cluzeau, D., Cortet, J., Decaëns, T., Deharveng, L., Dubs, F., Joimel, S. & et al. (2014b): Current use of and future needs for soil invertebrate functional traits in community ecology. Basic and Applied Ecology 15: 194–206. https://doi.org/10.1016/j.baae.2014.03.007.
Potapov, A., Sandmann, D. & Scheu, S. (2019): Ecotaxonomy: Linking traits, taxa, individuals and samples in a flexible virtual research environment for ecological studies. Biodiversity Information Science and Standards 3, e37166. https://doi.org/10.3897/biss.3.37166.
Potapov, A.M., Scheu, S. & Tiunov, A.V. (2019a): Trophic consistency of supraspecific taxa in below‐ground invertebrate communities: Comparison across lineages and taxonomic ranks. Functional Ecology 33: 1172–1183. https://doi.org/10.1111/1365-2435.13309.
Potapov, A.M., Tiunov, A.V. & Scheu, S. (2019b): Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biological Reviews 94: 37–59. https://doi.org/https://doi.org/10.1111/brv.12434.
Romillac, N., Santorufo & L. (2021): Transferring concepts from plant to microbial ecology: A framework proposal to identify relevant bacterial functional traits. Soil Biology and Biochemistry 162: 108415. https://doi.org/10.1016/j.soilbio.2021.108415.
Salmon, S., Ponge, J.F., Gachet, S., Deharveng, L., Lefebvre, N. & Delabrosse, F. (2014): Linking species, traits and habitat characteristics of Collembola at European scale. Soil Biology and Biochemistry 75: 73–85. https://doi.org/10.1016/j.soilbio.2014.04.002.
Sánchez-Bayo, F. & Wyckhuys, K.A.G. (2019): Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232: 8–27. https://doi.org/10.1016/j.biocon.2019.01.020.
Sandmann, D., Scheu, S. & Potapov, A. (2019): Ecotaxonomy: Linking taxa with traits and integrating taxonomical and ecological research. Biodiversity Information Science and Standards.
Santorufo, L., Cortet, J., Arena, C., Goudon, R., Rakoto, A., Morel, J.-L. & Maisto, G. (2014): An assessment of the influence of the urban environment on collembolan communities in soils using taxonomy- and trait-based approaches. Applied Soil Ecology 78: 48–56. https://doi.org/10.1016/j.apsoil.2014.02.008.
Schleuning, M., Fründ, J. & García, D. (2015): Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38: 380–392. https://doi.org/10.1111/ecog.00983.
Schleuning, M., García, D. & Tobias, J.A. (2023): Animal functional traits: Towards a trait-based ecology for whole ecosystems. Functional Ecology 37: 4–12. https://doi.org/10.1111/1365-2435.14246.
Sieriebriennikov, B., Ferris, H. & de Goede, R.G.M. (2014): NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology 61: 90–93. https://doi.org/10.1016/j.ejsobi.2014.02.004.
Stachewicz, J.D., Fountain-Jones, N.M., Koontz, A., Woolf, H., Pearse, W.D. & Gallinat, A.S. (2021): Strong trait correlation and phylogenetic signal in North American ground beetle (Carabidae) morphology. https://doi.org/10.1101/2021.02.12.431029.
Streit, R.P. & Bellwood, D.R. (2023): To harness traits for ecology, let’s abandon ‘functionality.’ Trends in Ecology & Evolution 38: 402–411. https://doi.org/10.1016/j.tree.2022.11.009.
Susanti, W.I., Bartels, T., Krashevska, V., Widyastuti, R., Deharveng, L., Scheu, S. & Potapov, A. (2021): Conversion of rainforest into oil palm and rubber plantations affects the functional composition of litter and soil Collembola. Ecology and Evolution 11: 10686–10708. https://doi.org/10.1002/ece3.7881.
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. (2007): Let the concept of trait be functional! Oikos 116: 882–892.
Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., Putten, W.H. van der & Wall, D.H. (2004): Ecological Linkages Between Aboveground and Belowground Biota. Science 304: 1629–1633. https://doi.org/10.1126/science.1094875.
Weiss, K.C.B. & Ray, C.A. (2019): Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42: 2012–2020. https://doi.org/10.1111/ecog.04387.
Widenfalk, L.A., Malmström, A., Berg, M.P. & Bengtsson, J. (2016): Small-scale Collembola community composition in a pine forest soil – Overdispersion in functional traits indicates the importance of species interactions. Soil Biology and Biochemistry 103: 52–62. https://doi.org/10.1016/j.soilbio.2016.08.006.
Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R., Robertson, T. & Vieglais, D. (2012): Darwin Core: An Evolving Community-Developed Biodiversity Data Standard. PLoS ONE 7, e29715. https://doi.org/10.1371/journal.pone.0029715.
Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Da Silva Santos, L.B., Bourne, P.E.,& et al. (2016): The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3: 160018. https://doi.org/10.1038/sdata.2016.18.
Wong, M.K.L., Guénard, B. & Lewis, O.T. (2019): Trait-based ecology of terrestrial arthropods. Biological Reviews 94: 999–1022. https://doi.org/10.1111/brv.12488.
Wright, J.P., Ames, G.M. & Mitchell, R.M. (2016): The more things change, the more they stay the same? When is trait variability important for stability of ecosystem function in a changing environment. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150272. https://doi.org/10.1098/rstb.2015.0272.
Zhou, Z., Krashevska, V., Widyastuti, R., Scheu, S. & Potapov, A. (2022): Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel. eLife 11, e75428. https://doi.org/10.7554/eLife.75428.
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Sophie Joimel, Anton Potapov, Benjamin Pey, Jonathan Bonfanti, Jérôme Cortet, Tania De Almeida, Sara Di Lonardo, Davorka K. Hackenberger, Paul Henning Krogh, Ryszard Laskowski, Susana Loureiro, Mickael Hedde
This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.