Effects of temperature increases on the feeding activity of two species of isopods (Porcellio scaber, Porcellionides pruinosus) in laboratory tests

Authors

  • Tanja Römbke ECT Oekotoxikologie GmbH
  • Jörg Römbke ECT Oekotoxikologie GmbH
  • David Russell Senckenberg Museum of Natural History Görlitz

Keywords:

Isopoda, temperate, Mediterranean, maple leaves, decomposition, global warming

Abstract

As a consequence of global warming, especially an increase in temperature, basic ecological services provided by Central European soil organisms such as organic matter decomposition might be impacted. Therefore, we investigated whether the feeding activity of isopods, namely a native temperate species, Porcellio scaber, and a Mediterranean species, Porcellionides pruinosus, would be affected by an increase in temperature. In detail, the consumption of litter by isopods at 20°C and 28°C was studied. During tests running for two weeks, the woodlice were fed with leaves not only from temperate (Acer plantanoides) but also Mediterranean (Acer opalus) maple trees. While the higher temperature clearly affected Porcellio scaber (higher mortality but also higher consumption), no such effect was found for the Mediterranean species. The results presented here indicate that Porcellionides pruinosus is able to take over the role of Porcellio scaber in Central Europe in litter decomposition in the case of, i.e., distribution changes due to global warming, as it is adapted to higher temperatures and demonstrates a constant feeding rate independent of the food source provided.

References

Bayley, M. & E. Baatrup (1996): Pesticide uptake and locomotor behavior in the woodlouse: an experimental study employing video tracking and 14C-labelling. – Ecotoxicology 5: 35–45.

Blankinship, J. C., P. A. Niklaus & B. A. Hungate (2011): A meta-analysis of responses of soil biota to global change. – Oecologia 165: 553–565.

Borchert, J. D., K. S. Sheldon & J. J. Tewksbury (2010): Differences in the thermal tolerances of isopods, from a temperate and tropical region, will buffer temperate isopods from the impacts of climate change. – Integrative and Comparative Biology 50 (Suppl. 1): E207–E207.

Brown, A. L. (1980) Ecology of Soil Organisms. 2nd edition. – Heinemann Educational Books, London: 116 pp.

David, J-F. (2009): Ecology of millipeds (Dilpopoda) in the context of global change. – Soil Organisms 81(3): 719–733.

David, J-F. & D. Gillon (2009): Combined effects of elevated temperatures and reduced leaf litter quality on the life-history parameters of a saprophagous macroarthropod. – Global Change Biology 15: 156–165.

David, J-F. & I. T. Handa (2010): The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. – Biological Reviews 85: 881–895.

De Groot, R. S., M. A. Wilson & R. M. J. Boumans (2002): A typology for the classification, description and valuation of ecosystem functions, goods and services. – Ecological Economics 41: 393–408.

Drobne, D. (1997): Terrestrial isopods – A good choice for toxicity testing of pollutants in the terrestrial environment. – Environmental Toxicology Chemistry 16: 1159–1164.

Dunger, W. & H. J. Fiedler (1997): Methoden der Bodenbiologie. – Fischer Verlag, Stuttgart: 539 pp.

Eggleton, P., K. Inward, J. Smith, D. T. Jones & E. Sherlock (2009): A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. – Soil Biology & Biochemistry 41: 1857–1865.

Engenheiro, E., P. K. Hankard, J. P. Sousa, M. F. Lemos, J. M. Weeks & A. M. V. M. Soares (2005): Influence of simethoate on Acetylcholinesterase activity and locomotor function in terrestrial isopods. – Environmental Toxicology Chemistry 24: 603–609.

Garcia, M. (2004): Effects of pesticides on soil fauna: development of ecotoxicological test methods for tropical regions. – PhD Thesis, University of Bonn: 281 pp.

Hassall, M., J. G. Turner & M. R. W. Rands (1987): Effects of terrestrial isopods on the decomposition of woodland leaf litter. – Oecologia (Berlin) 72: 597–604.

Hassall, M., D. P. Edwards, R. Carmenta, M. A. Derhe & A. Moss (2010): Predicting the effect of climate change on aggregation behaviour in four species of terrestrial isopods. – Behaviour 147: 151–164.

Hornung, E., S. Farkas & E. Fischer (1998): Tests on the isopod Porcellio scaber. In: Løkke, H. & C. A. M. Van Gestel (eds): Handbook of Soil Invertebrate Toxicity Tests. – John Wiley & Sons, Chichester: 207–226.

Jänsch, S., M. V. B. Garcia & J. Roembke (2005): Acute and chronic isopod testing using tropical Porcellionides pruinosus and three model pesticides. – European Journal Soil Biology 41: 143–152.

Kight, S. L. (2009): Reproductive ecology of terrestrial isopods (Crustacea: Oniscidea). – Terrestrial Arthropod Reviews 1: 95–110.

Lavelle, P. & A. Spain (2004): Soil Ecology. – Kluwer Acad. Publ., Dordrecht: 654 pp.

Løkke, H. & C. A. M. Van Gestel (1998): Handbook of Soil Invertebrate Toxicity Tests. – John Wiley & Sons, Chichester: 281 pp.

Nair, A. G., F. A. Attia & N. H. Saeid (1994): Food preference feeding and growth rates of the woodlouse Porcellio scaber (Isopoda, Oniscidea, Porcellionidae). – African Journal of Ecology 32: 80–84.

OECD (1984): Guideline for Testing of Chemicals No. 207. Earthworm Acute Toxicity Test. Organisation for Economic Co-operation and Development, Paris, France.

Pearson, R. G. (2006): Climate change and the migration capacity of species. – Trends in Ecology and Evolution 21: 111–113.

Roloff, A. & A. Bärtels (2008): Flora der Gehölze. – Ulmer-Verlag, Stuttgart: 853 pp.

Römbke, J., S. Jänsch & R. Scroggins (2006): Identification of potential organisms of relevance to Canadian boreal forest and northern lands for testing of contaminated soils. – Environmental Reviews 14: 137–167.

Rothmaler, W. (1976): Exkursionsflora für die Gebiete der DDR und der BDR: Gefäßpflanzen. – Volk und Wissen Volkseigner Verlag, Berlin: 612 pp.

Schöps, F.-R. & D. J. Russell (2004): Ein modifizierter Friedman-Test (nicht-parametrische ANOVA) für quantitative Auswertungen von Bodenmesofauna- Daten. – Mitteilungen der AG Bodenmesofauna 20: 31–35.

Sutton, S. L. & D. M. Holdich (eds) (1984): The Biology of Terrestrial Isopods. Symposia of the Zoological Society of London No. 53. – Oxford University Press, Oxford: 518 pp.

Swift, M. J., O. W. Heal & J. M. Anderson (1979): Decomposition in Terrestrial Ecosystems. – Blackwell Scientific, Oxford: 372 pp.

Szlavecz, K. & V. C. Maiorana (1998): Supplementary food in the diet of the terrestrial isopod Porcellio scaber (Isopoda: Oniscidea). – Israel Journal of Zoology 44: 413–421.

Thuiller, W. (2007): Climate change and the ecologist. – Nature 448: 550–552.

Uvarov, A. V., A. V. Tiunov & S. Scheu (2011): Effects of seasonal and diurnal temperature fluctuations on population dynamics of two epigeic earthworm species in forest soil. – Soil Biology & Biochemistry 43: 559–570.

Warburg, M. R. (1987): Isopods and their terrestrial environment. – Advances in Ecological Research 17: 187–242.

Zar, J. H. (1999): Biostatistical Analysis. 4th Edition. – Prentice Hall, London Sydney Toronto: 663 pp.

Downloads

Published

2011-08-01

How to Cite

Römbke, T., Römbke, J., & Russell, D. (2011). Effects of temperature increases on the feeding activity of two species of isopods (Porcellio scaber, Porcellionides pruinosus) in laboratory tests. SOIL ORGANISMS, 83(2), 211–220. Retrieved from https://soil-organisms.org/index.php/SO/article/view/246

Issue

Section

ARTICLES