Reviving Soil Biodiversity in Agricultural Land
DOI:
https://doi.org/10.25674/445Keywords:
soil management, tillage, sustainability, soil fauna, Soil microbes, arable landAbstract
The biodiversity of soils – from microorganisms to megafauna – supports multiple essential ecosystem services, such as food production and the regulation of soil and water quality. Climate change, land use intensification, and pollution, among other drivers, however pose a severe threat to soil organisms and can lead to the degradation of soils, especially in arable land. Hence, identifying these, often man-made, pressures and finding solutions for the sustainable management of soils can be considered one of the most important challenges of the 21st century. As part of the German Biodiversity Assessment (‘Faktencheck Artenvielfalt’) a group of experts summarized the available knowledge, combined with expert opinion, on the state and role of soil biodiversity in Germany. Here, we highlight past and current land use practices in agricultural ecosystems and demonstrate how various management measures affect different soil taxa. We discuss avenues of sustainable soil management, in particular different tillage regimes, organic amendments, and crop rotation, with regard to fostering soil biodiversity. We point out that any management measure must consider the local context, in particular regarding soil properties and climatic conditions, including their variability in space and time. Our results demonstrate that soil biodiversity is an integral but harmed part of arable ecosystems and summarize current and future best management practices, with a focus on Germany and comparable countries.
Downloads
References
Anthony, M. A., Bender, S. F., & van der Heijden, M. G. A. (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences, 120(33), e2304663120. https://doi.org/10.1073/pnas.2304663120
Bai, Y., & Cotrufo, M. F. (2022). Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 377(6606), 603–608. https://doi.org/10.1126/science.abo2380
Bardgett, R. D., & van der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505–511. https://doi.org/10.1038/nature13855
Bengtsson, J., Ahnström, J., & Weibull, A.-C. (2005). The effects of organic agriculture on biodiversity and abundance: A meta-analysis. Journal of Applied Ecology, 42(2), 261–269. https://doi.org/10.1111/j.1365-2664.2005.01005.x
Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecology & Evolution, 18(4), 182–188. https://doi.org/10.1016/s0169-5347(03)00011-9
Betancur-Corredor, B., Lang, B., & Russell, D. J. (2022). Reducing tillage intensity benefits the soil micro- and mesofauna in a global meta-analysis. European Journal of Soil Science, 73(6), e13321. https://doi.org/10.1111/ejss.13321
Betancur-Corredor, B., Lang, B., & Russell, D. J. (2023). Organic nitrogen fertilization benefits selected soil fauna in global agroecosystems. Biology and Fertility of Soils, 59(1), 1–16. https://doi.org/10.1007/s00374-022-01677-2
Birkhofer, K., Dietrich, C., John, K., Schorpp, Q., Zaitsev, A. S., & Wolters, V. (2016). Regional Conditions and Land-Use Alter the Potential Contribution of Soil Arthropods to Ecosystem Services in Grasslands. Frontiers in Ecology and Evolution, 3. https://doi.org/10.3389/fevo.2015.00150
Bogužas, V., Skinulienė, L., Butkevičienė, L. M., Steponavičienė, V., Petrauskas, E., & Maršalkienė, N. (2022). The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants, 11(3), 431. https://doi.org/10.3390/plants11030431
Böhme, L., Langer, U., & Böhme, F. (2005). Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems & Environment, 109(1–2), 141–152. https://doi.org/10.1016/j.agee.2005.01.017
Bolan, S., Sharma, S., Mukherjee, S., Kumar, M., Rao, Ch. S., Nataraj, K. C., Singh, G., Vinu, A., Bhowmik, A., Sharma, H., El-Naggar, A., Chang, S. X., Hou, D., Rinklebe, J., Wang, H., Siddique, K. H. M., Abbott, L. K., Kirkham, M. B., & Bolan, N. (2024). Biochar modulating soil biological health: A review. Science of The Total Environment, 914, 169585. https://doi.org/10.1016/j.scitotenv.2023.169585
Briones, M. J. I., & Schmidt, O. (2017). Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta‐analysis. Global Change Biology, 23(10), 4396–4419. https://doi.org/10.1111/gcb.13744
Brühl, C. A., Engelhard, N., Bakanov, N., Wolfram, J., Hertoge, K., & Zaller, J. G. (2024). Widespread contamination of soils and vegetation with current use pesticide residues along altitudinal gradients in a European Alpine valley. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-024-01220-1
Burmeister, J., Parzefall, S., Wiesmeier, M., Ebertseder, F., Henkelmann, G., Walter, R., & Fritz, M. (2020). Gärrestversuch Bayern—Prüfung der langfristigen Nachhaltigkeit der Nutzungspfade Biogas und BtL (No. 67; Berichte Aus Dem TFZ, p. 240). Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe. https://www.tfz.bayern.de/mam/cms08/rohstoffpflanzen/dateien/tfz_bericht_67_gaerrest_geschuetzt.pdf
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67. https://doi.org/10.1038/nature11148
Cramer, V., Hobbs, R., & Standish, R. (2008). What’s new about old fields? Land abandonment and ecosystem assembly. Trends in Ecology & Evolution, 23(2), 104–112. https://doi.org/10.1016/j.tree.2007.10.005
Decaëns, T., Bureau, F., & Margerie, P. (2003). Earthworm communities in a wet agricultural landscape of the Seine Valley (Upper Normandy, France). Pedobiologia, 47(5–6), 479–489. https://doi.org/10.1078/0031-4056-00217
EC - European Commission. (2023, July 5). Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on Soil Monitoring and Resilience (Soil Monitoring Law). European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52023PC0416
Ehrmann, O. (1996). Regenwürmer in einigen südwestdeutschen Agrarlandschaften: Vorkommen, Entwicklung bei Nutzungsänderungen und Auswirkungen auf das Bodengefüge. Hohenheimer Bodenkundliche Hefte, Heft 35, 135.
Eisenhauer, N., Angst, G., Asato, A. E. B., Beugnon, R., Bönisch, E., Cesarz, S., Dietrich, P., Jurburg, S. D., Madaj, A.-M., Reuben, R. C., Ristok, C., Sünnemann, M., Yi, H., Guerra, C. A., & Hines, J. (2023). The heterogeneity–diversity–system performance nexus. National Science Review, 10(7), nwad109. https://doi.org/10.1093/nsr/nwad109
Eisenhauer, N., Ristok, C., Guerra, C. A., Tebbe, C. C., Xylander, W. E. R., Babin, D., Bartkowski, B., Burkhard, B., Filser, J., Glante, F., Hohberg, K., Kleemann, J., Kolb, S., Lachmann, C., Lehmitz, R., Rillig, M. C., Römbke, J., Ruess, L., Scheu, S., … Wellbrock, N. (2024). Bodenbiodiversität. In C. Wirth, H. Bruelheide, N. Farwig, J. M. Marx, & J. Settele (Eds.), Faktencheck Artenvielfalt—Assessment zum Erhalt der biologischen Vielfalt in Deutschland (pp. 917–1048). oekom.
Emmerling, C. (2001). Response of earthworm communities to different types of soil tillage. Applied Soil Ecology, 17(1), 91–96. https://doi.org/10.1016/S0929-1393(00)00132-3
Emmerling, C. (2007). Reduced and Conservation Tillage Effects on Soil Ecological Properties in an Organic Farming System. Biological Agriculture & Horticulture, 24(4), 363–377. https://doi.org/10.1080/01448765.2007.9755033
Emmerling, C. (2014). Impact of land-use change towards perennial energy crops on earthworm population. Applied Soil Ecology, 84, 12–15. https://doi.org/10.1016/j.apsoil.2014.06.006
Faust, S., Koch, H.-J., Dyckmans, J., & Joergensen, R. G. (2019). Response of maize leaf decomposition in litterbags and soil bags to different tillage intensities in a long-term field trial. Applied Soil Ecology, 141, 38–44. https://doi.org/10.1016/j.apsoil.2019.05.006
Fernandez-Gnecco, G., Covacevich, F., Consolo, V. F., Behr, J. H., Sommermann, L., Moradtalab, N., Maccario, L., Sørensen, S. J., Deubel, A., Schellenberg, I., Geistlinger, J., Neumann, G., Grosch, R., Smalla, K., & Babin, D. (2022). Effect of Long-Term Agricultural Management on the Soil Microbiota Influenced by the Time of Soil Sampling. Frontiers in Soil Science, 2, 1–16. https://doi.org/10.3389/fsoil.2022.837508
Figuerola, E. L. M., Guerrero, L. D., Türkowsky, D., Wall, L. G., & Erijman, L. (2015). Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environmental Microbiology, 17(3), 678–688. https://doi.org/10.1111/1462-2920.12497
Filser, J. (1996). Ecological Field Studies in Soil: Balancing Between Space, Time, and Manpower Resources. Senckenbergiana Maritima, 27((3/6)), 109–118.
Filser, J., Dette, A., Fromm, H., Lang, A., Mebes, K.-H., Munch, J. C., Nagel, R., Winter, K., & Beese, F. (1999). Reactions of soil organisms to site-specific management: The first long-term study at the landscape scale. In W. Windhorst & P. H. Enckell (Eds.), Proceedings of the conference “Sustainable Landuse Management—The Challange of Ecosystem Protection” (Vol. 28, pp. 139–147). Ecosys Suppl.
Filser, J., Faber, J. H., Tiunov, A. V., Brussaard, L., Frouz, J., De Deyn, G., Uvarov, A. V., Berg, M. P., Lavelle, P., Loreau, M., Wall, D. H., Querner, P., Eijsackers, H., & Jiménez, J. J. (2016). Soil fauna: Key to new carbon models. SOIL, 2(4), 565–582. https://doi.org/10.5194/soil-2-565-2016
Filser, J., Fromm, H., Nagel, R. F., & Winter, K. (1995). Effects of previous intensive agricultural management on microorganisms and the biodiversity of soil fauna. Plant and Soil, 170(1), 123–129. https://doi.org/10.1007/BF02183060
Foster, D., Swanson, F., Aber, J., Burke, I., Brokaw, N., Tilman, D., & Knapp, A. (2003). The Importance of Land-Use Legacies to Ecology and Conservation. BioScience, 53(1), 77. https://doi.org/10.1641/0006-3568(2003)053[0077:TIOLUL]2.0.CO;2
Fromm, H., Winter, K., Filser, J., Hantschel, R., & Beese, F. (1993). The influence of soil type and cultivation system on the spatial distributions of the soil fauna and microorganisms and their interactions. Geoderma, 60(1–4), 109–118. https://doi.org/10.1016/0016-7061(93)90021-C
Frouz, J. (1999). Use of soil dwelling Diptera (Insecta, Diptera) as bioindicators: A review of ecological requirements and response to disturbance. Agriculture, Ecosystems & Environment, 74(1), 167–186. https://doi.org/10.1016/S0167-8809(99)00036-5
Garcia-Franco, N., Walter, R., Wiesmeier, M., Hurtarte, L. C. C., Berauer, B. J., Buness, V., Zistl-Schlingmann, M., Kiese, R., Dannenmann, M., & Kögel-Knabner, I. (2021). Biotic and abiotic controls on carbon storage in aggregates in calcareous alpine and prealpine grassland soils. Biology and Fertility of Soils, 57(2), 203–218. https://doi.org/10.1007/s00374-020-01518-0
Ghani, M. I., Ali, A., Atif, M. J., Pathan, S. I., Pietramellara, G., Ali, M., Amin, B., & Cheng, Z. (2022). Diversified crop rotation improves continuous monocropping eggplant production by altering the soil microbial community and biochemical properties. Plant and Soil, 480(1–2), 603–624. https://doi.org/10.1007/s11104-022-05606-y
Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., & Kroon, H. de. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE, 12(10), e0185809. https://doi.org/10.1371/journal.pone.0185809
Hartmann, M., & Six, J. (2023). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4(1), 4–18. https://doi.org/10.1038/s43017-022-00366-w
Heinen, J., Smith, M. E., Taylor, A., & Bommarco, R. (2023). Combining organic fertilisation and perennial crops in the rotation enhances arthropod communities. Agriculture, Ecosystems & Environment, 349, 108461. https://doi.org/10.1016/j.agee.2023.108461
Hendrix, P. F., Robert W. Parmelee, Crossley, D. A., Jr., Coleman, D. C., Odum, E. P., & Groffman, P. M. (1986). Detritus Food Webs in Conventional and No-tillage Agroecosystems. BioScience, 36(6), 374–380. https://doi.org/10.2307/1310259
Heuss, L., Grevé, M. E., Schäfer, D., Busch, V., & Feldhaar, H. (2019). Direct and indirect effects of land‐use intensification on ant communities in temperate grasslands. Ecology and Evolution, 9(7), 4013–4024. https://doi.org/10.1002/ece3.5030
Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agriculture, Ecosystems & Environment, 103(1), 1–25. https://doi.org/10.1016/j.agee.2003.12.018
Holland, J. M., Frampton, G. K., Çilgi, T., & Wratten, S. D. (1994). Arable acronyms analysed – a review of integrated arable farming systems research in Western Europe. Annals of Applied Biology, 125(2), 399–438. https://doi.org/10.1111/j.1744-7348.1994.tb04980.x
Irmler, U. (2010). Changes in earthworm populations during conversion from conventional to organic farming. Agriculture, Ecosystems & Environment, 135(3), 194–198. https://doi.org/10.1016/j.agee.2009.09.008
Jeanneret, P., Lüscher, G., Schneider, M. K., Pointereau, P., Arndorfer, M., Bailey, D., Balázs, K., Báldi, A., Choisis, J.-P., Dennis, P., Diaz, M., Eiter, S., Elek, Z., Fjellstad, W., Frank, T., Friedel, J. K., Geijzendorffer, I. R., Gillingham, P., Gomiero, T., … Herzog, F. (2021). An increase in food production in Europe could dramatically affect farmland biodiversity. Communications Earth & Environment, 2(1), 183. https://doi.org/10.1038/s43247-021-00256-x
Jochum, M., Ferlian, O., Thakur, M. P., Ciobanu, M., Klarner, B., Salamon, J., Frelich, L. E., Johnson, E. A., & Eisenhauer, N. (2021). Earthworm invasion causes declines across soil fauna size classes and biodiversity facets in northern North American forests. Oikos, 130(5), 766–780. https://doi.org/10.1111/oik.07867
Joschko, M., Barkusky, D., Rogasik, J., Fox, C. A., Rogasik, H., Gellert, R., Buchholz, B., Ellmer, F., Reinhold, J., & Gerlach, F. (2012). On-farm study of reduced tillage on sandy soil: Effects on soil organic carbon dynamic and earthworm abundance. Archives of Agronomy and Soil Science, 58(sup1), S252–S260. https://doi.org/10.1080/03650340.2012.698733
Kahle, P., Baum, C., Boelcke, B., Kohl, J., & Ulrich, R. (2010). Vertical distribution of soil properties under short-rotation forestry in Northern Germany. Journal of Plant Nutrition and Soil Science, 173(5), 737–746. https://doi.org/10.1002/jpln.200900230
Li, T., Jiao, Y., Liu, T., Gu, H., Li, Z., Wang, S., & Liu, J. (2024). Effects of biochar addition on soil fauna communities—A meta‐analysis. Soil Use and Management, 40(3). https://doi.org/10.1111/sum.13096
Liu, B., Arlotti, D., Huyghebaert, B., & Tebbe, C. C. (2022). Disentangling the impact of contrasting agricultural management practices on soil microbial communities – Importance of rare bacterial community members. Soil Biology and Biochemistry, 166, 108573. https://doi.org/10.1016/j.soilbio.2022.108573
Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil Fertility and Biodiversity in Organic Farming. Science, 296(5573), 1694–1697. https://doi.org/10.1126/science.1071148
Médiène, S., Valantin-Morison, M., Sarthou, J.-P., De Tourdonnet, S., Gosme, M., Bertrand, M., Roger-Estrade, J., Aubertot, J.-N., Rusch, A., Motisi, N., Pelosi, C., & Doré, T. (2011). Agroecosystem management and biotic interactions: A review. Agronomy for Sustainable Development, 31(3), 491–514. https://doi.org/10.1007/s13593-011-0009-1
Mommertz, S., Schauer, C., Kösters, N., Lang, A., & Filser, J. (1996). A comparison of D-Vac suction, fenced and unfenced pitfall trap sampling of epigeal arthropods in agro- ecosystems. Annales Zoologici Fennici, 33, 117–124.
Morugán-Coronado, A., Pérez-Rodríguez, P., Insolia, E., Soto-Gómez, D., Fernández-Calviño, D., & Zornoza, R. (2022). The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agriculture, Ecosystems & Environment, 329, 107867. https://doi.org/10.1016/j.agee.2022.107867
Müller, P., Neuhoff, D., Nabel, M., Schiffers, K., & Döring, T. F. (2022). Tillage effects on ground beetles in temperate climates: A review. Agronomy for Sustainable Development, 42(4), 65. https://doi.org/10.1007/s13593-022-00803-6
Murugan, R., Koch, H.-J., & Joergensen, R. G. (2014). Long-term influence of different tillage intensities on soil microbial biomass, residues and community structure at different depths. Biology and Fertility of Soils, 50(3), 487–498. https://doi.org/10.1007/s00374-013-0871-x
Nacke, H., Thürmer, A., Wollherr, A., Will, C., Hodac, L., Herold, N., Schöning, I., Schrumpf, M., & Daniel, R. (2011). Pyrosequencing-Based Assessment of Bacterial Community Structure Along Different Management Types in German Forest and Grassland Soils. PLoS ONE, 6(2), e17000. https://doi.org/10.1371/journal.pone.0017000
Nakamura, Y., & Fujita, M. (1988). Abundance of lumbricids and enchytraeids in an organically farmed field in northern Hokkaido, Japan. Pedobiologia, 32(1–2), 11–14. https://doi.org/10.1016/S0031-4056(23)00210-X.
Neaman, A., Schoffer, J.-T., Navarro-Villarroel, C., Pelosi, C., Peñaloza, P., Dovletyarova, E., & Schneider, J. (2024). Copper contamination in agricultural soils: A review of the effects of climate, soil properties, and prolonged copper pesticide application in vineyards and orchards. Plant, Soil and Environment, 70(7), 407–417. https://doi.org/10.17221/501/2023-pse
Oehl, F., Sieverding, E., Mäder, P., Dubois, D., Ineichen, K., Boller, T., & Wiemken, A. (2004). Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia, 138(4), 574–583. https://doi.org/10.1007/s00442-003-1458-2
Ostandie, N., Giffard, B., Bonnard, O., Joubard, B., Richart-Cervera, S., Thiéry, D., & Rusch, A. (2021). Multi-community effects of organic and conventional farming practices in vineyards. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-91095-5
Pe’er, G., Bonn, A., Bruelheide, H., Dieker, P., Eisenhauer, N., Feindt, P. H., Hagedorn, G., Hansjürgens, B., Herzon, I., Lomba, Â., Marquard, E., Moreira, F., Nitsch, H., Oppermann, R., Perino, A., Röder, N., Schleyer, C., Schindler, S., Wolf, C., … Lakner, S. (2020). Action needed for the EU Common Agricultural Policy to address sustainability challenges. People and Nature, 2(2), 305–316. https://doi.org/10.1002/pan3.10080
Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., & Vandenbulcke, F. (2014). Pesticides and earthworms. A review. Agronomy for Sustainable Development, 34(1), 199–228. https://doi.org/10.1007/s13593-013-0151-z
Pelosi, C., Bertrand, M., & Roger-Estrade, J. (2009). Earthworm community in conventional, organic and direct seeding with living mulch cropping systems. Agronomy for Sustainable Development, 29(2), 287–295. https://doi.org/10.1051/agro/2008069
Pelosi, C., Bertrand, M., Thénard, J., & Mougin, C. (2015). Earthworms in a 15 years agricultural trial. Applied Soil Ecology, 88, 1–8. https://doi.org/10.1016/j.apsoil.2014.12.004
Pelosi, C., & Römbke, J. (2016). Are Enchytraeidae (Oligochaeta, Annelida) good indicators of agricultural management practices? Soil Biology and Biochemistry, 100, 255–263. https://doi.org/10.1016/j.soilbio.2016.06.030
Phillips, H. R. P., Cameron, E. K., Eisenhauer, N., Burton, V. J., Ferlian, O., Jin, Y., Kanabar, S., Malladi, S., Murphy, R. E., Peter, A., Petrocelli, I., Ristok, C., Tyndall, K., Putten, W. van der, & Beaumelle, L. (2024). Global changes and their environmental stressors have a significant impact on soil biodiversity—A meta-analysis. iScience, 27(9). https://doi.org/10.1016/j.isci.2024.110540
Pingel, M., Reineke, A., & Leyer, I. (2023). Disentangling the mixed effects of soil management on microbial diversity and soil functions: A case study in vineyards. Scientific Reports, 13(1), 3568. https://doi.org/10.1038/s41598-023-30338-z
Plum, N. M., & Filser, J. (2005). Floods and drought: Response of earthworms and potworms (Oligochaeta: Lumbricidae, Enchytraeidae) to hydrological extremes in wet grassland. Pedobiologia, 49(5), 443–453. https://doi.org/10.1016/j.pedobi.2005.05.004
Puissant, J., Villenave, C., Chauvin, C., Plassard, C., Blanchart, E., & Trap, J. (2021). Quantification of the global impact of agricultural practices on soil nematodes: A meta-analysis. Soil Biology and Biochemistry, 161, 108383. https://doi.org/10.1016/j.soilbio.2021.108383
Scheu, S., & Schulz, E. (1996). Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodiversity & Conservation, 5(2), 235–250. https://doi.org/10.1007/BF00055833
Schmid, C. A. O., Schröder, P., Armbruster, M., & Schloter, M. (2018). Organic Amendments in a Long-term Field Trial—Consequences for the Bulk Soil Bacterial Community as Revealed by Network Analysis. Microbial Ecology, 76(1), 226–239. https://doi.org/10.1007/s00248-017-1110-z
Schmidt, J., Fester, T., Schulz, E., Michalzik, B., Buscot, F., & Gutknecht, J. (2017). Effects of plant-symbiotic relationships on the living soil microbial community and microbial necromass in a long-term agro-ecosystem. Science of The Total Environment, 581–582, 756–765. https://doi.org/10.1016/j.scitotenv.2017.01.005
Schmidt, J. H., Bergkvist, G., Campiglia, E., Radicetti, E., Wittwer, R. A., Finckh, M. R., & Hallmann, J. (2017). Effect of tillage, subsidiary crops and fertilisation on plant‐parasitic nematodes in a range of agro‐environmental conditions within Europe. Annals of Applied Biology, 171(3), 477–489. https://doi.org/10.1111/aab.12389
Schmidt, O., Clements, R. O., & Donaldson, G. (2003). Why do cereal–legume intercrops support large earthworm populations? Applied Soil Ecology, 22(2), 181–190. https://doi.org/10.1016/S0929-1393(02)00131-2
Schmidt, O., Curry, J. P., Hackett, R. A., Purvis, G., & Clements, R. O. (2001). Earthworm communities in conventional wheat monocropping and low-input wheat-clover intercropping systems. Annals of Applied Biology, 138(3), 377–388. https://doi.org/10.1111/j.1744-7348.2001.tb00123.x
Silver, W. L., Perez, T., Mayer, A., & Jones, A. R. (2021). The role of soil in the contribution of food and feed. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834), 20200181. https://doi.org/10.1098/rstb.2020.0181
Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Science Society of America Journal, 70(2), 555–569. https://doi.org/10.2136/sssaj2004.0347
Sun, H., Koal, P., Gerl, G., Schroll, R., Gattinger, A., Joergensen, R. G., & Munch, J. C. (2018). Microbial communities and residues in robinia- and poplar-based alley-cropping systems under organic and integrated management. Agroforestry Systems, 92(1), 35–46. https://doi.org/10.1007/s10457-016-0009-x
Sun, H., Koal, P., Liu, D., Gerl, G., Schroll, R., Gattinger, A., Joergensen, R. G., & Munch, J. C. (2016). Soil microbial community and microbial residues respond positively to minimum tillage under organic farming in Southern Germany. Applied Soil Ecology, 108, 16–24. https://doi.org/10.1016/j.apsoil.2016.07.014
Sunderland, K., & Samu, F. (2000). Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: A review. Entomologia Experimentalis et Applicata, 95(1), 1–13. https://doi.org/10.1046/j.1570-7458.2000.00635.x
Tsiafouli, M. A., Thébault, E., Sgardelis, S. P., de Ruiter, P. C., van der Putten, W. H., Birkhofer, K., Hemerik, L., de Vries, F. T., Bardgett, R. D., Brady, M. V., Bjornlund, L., Jørgensen, H. B., Christensen, S., Hertefeldt, T. D., Hotes, S., Gera Hol, W. h., Frouz, J., Liiri, M., Mortimer, S. R., … Hedlund, K. (2015). Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 21(2), 973–985. https://doi.org/10.1111/gcb.12752
Tuck, S. L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L. A., & Bengtsson, J. (2014). Land‐use intensity and the effects of organic farming on biodiversity: A hierarchical meta‐analysis. Journal of Applied Ecology, 51(3), 746–755. https://doi.org/10.1111/1365-2664.12219
Twardowski, J. P., Hurej, M., & Gruss, I. (2016). Diversity and abundance of springtails (Hexapoda: Collembola) in soil under 90-year potato monoculture in relation to crop rotation. Archives of Agronomy and Soil Science, 62(8), 1158–1168. https://doi.org/10.1080/03650340.2015.1131270
Ulrich, S., Tischer, S., Hofmann, B., & Christen, O. (2010). Biological soil properties in a long‐term tillage trial in Germany. Journal of Plant Nutrition and Soil Science, 173(4), 483–489. https://doi.org/10.1002/jpln.200700316
Valckx, J., Cockx, L., Wauters, J., Van Meirvenne, M., Govers, G., Hermy, M., & Muys, B. (2009). Within-field spatial distribution of earthworm populations related to species interactions and soil apparent electrical conductivity. Applied Soil Ecology, 41(3), 315–328. https://doi.org/10.1016/j.apsoil.2008.12.005
van Capelle, C., Schrader, S., & Brunotte, J. (2012). Tillage-induced changes in the functional diversity of soil biota – A review with a focus on German data. European Journal of Soil Biology, 50, 165–181. Scopus. https://doi.org/10.1016/j.ejsobi.2012.02.005
van Groenigen, J. W., van Groenigen, K. J., Koopmans, G. F., Stokkermans, L., Vos, H. M. J., & Lubbers, I. M. (2019). How fertile are earthworm casts? A meta-analysis. Geoderma, 338, 525–535. https://doi.org/10.1016/j.geoderma.2018.11.001
Vidal, A., Schucknecht, A., Toechterle, P., Linares, D. R. A., Garcia-Franco, N., Von Heßberg, A., Krämer, A., Sierts, A., Fischer, A., Willibald, G., Fuetterer, S., Ewald, J., Baumert, V., Weiss, M., Schulz, S., Schloter, M., Bogacki, W., Wiesmeier, M., Mueller, C. W., & Dannenmann, M. (2020). High resistance of soils to short-term re-grazing in a long-term abandoned alpine pasture. Agriculture, Ecosystems & Environment, 300, 107008. https://doi.org/10.1016/j.agee.2020.107008
Wagg, C., Bender, S. F., Widmer, F., & Heijden, M. G. A. van der. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 111(14), 5266–5270. https://doi.org/10.1073/pnas.1320054111
Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. Nature, 528(7580), Article 7580. https://doi.org/10.1038/nature15744
Walter, R., & Burmeister, J. (2022). 35 Jahre Bodendauerbeobachtung landwirtschaftlich genutzter Flächen in Bayern. Band 5: Regenwürmer. (No. 2; Schriftenreihe Der Bayerischen Landesanstalt Für Landwirtschaft, p. 83). Bayerische Landesanstalt für Landwirtschaft (LfL).
Webb, K. M., & Aylmore, L. A. G. (2002). The role of soil organic matter and water potential in determining pesticide degradation. In A. Violante, P. M. Huang, J.-M. Bollag, & L. Gianfreda (Eds.), Developments in Soil Science (Vol. 28, pp. 117–125). Elsevier. https://doi.org/10.1016/S0166-2481(02)80048-4
Wirth, C., Bruelheide, H., Farwig, N., Marx, J. M., & Settele, J. (Eds.). (2024). Faktencheck Artenvielfalt—Bestandsaufnahme und Perspektiven zum Erhalt der biologischen Vielfalt in Deutschland. oekom. https://doi.org/10.14512/9783987263361
Wirth, C., Bruelheide, H., Farwig, N., Settele, J., Marx, J. M., Ellerbrok, J. S., Schmidt, A., Spatz, T., Sporbert, M., Bieling, C., Eisenhauer, N., Eskildsen, K., Feld, C. K., Freyhof, J., Fürst, C., Grunewald, K., Grüner, S., Guerra, C. A., Haase, D., … Xylander, W. E. R. (2024). Faktencheck Artenvielfalt—Bestandsaufnahme und Perspektiven zum Erhalt der biologischen Vielfalt in Deutschland—Zusammenfassung für die gesellschaftliche Entscheidungsfindung (C. Wirth, H. Bruelheide, N. Farwig, J. M. Marx, & J. Settele, Eds.). oekom. https://doi.org/10.14512/9783987263378
Wolters, V., & Ekschmitt, K. (1997). Gastropods, Isopods, Diplopods, and Chilopods: Neglected Groups of the Decomposer Food Web. In G. Benckiser (Ed.), Fauna in Soil Ecosystems (pp. 265–306). CRC Press.
Xiang, Y., Liu, Y., Niazi, N. K., Bolan, N., Zhao, L., Zhang, S., Xue, J., Yao, B., & Li, Y. (2023). Biochar addition increased soil bacterial diversity and richness: Large-scale evidence of field experiments. Science of The Total Environment, 893, 164961. https://doi.org/10.1016/j.scitotenv.2023.164961
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Juliane Filser, Luise Xiaqian Doms-Grimm, Christian Ristok

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.