Variations in trophic niches of generalist predators with plant community composition as indicated by stable isotopes and fatty acids

Authors

  • Odette González Macé J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
  • Anne Ebeling Department of Population Ecology, Institute of Ecology, Friedrich Schiller University of Jena, Dornburger Str. 159, 07743 Jena, Germany
  • Nico Eisenhauer German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
  • Simone Cesarz German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
  • Stefan Scheu J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany; Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Von-Siebold-Str. 8, 37075 Göttingen, Germany

DOI:

https://doi.org/10.25674/so91204

Keywords:

spider, Lycosidae, beetle, Carabidae, grassland, diet

Abstract

Arthropods are a dominant component of biodiversity in terrestrial ecosystems. They are considered pest control agents and drive important ecosystem processes like nutrient cycling. However, such ecosystem effects of arthropods may depend on the environmental context influencing nutrition and behaviour. In the framework of a grassland plant diversity experiment (Jena Experiment), we used stable isotope and fatty acid analysis to investigate intraspecific variations in the diet of two of the most abundant predatory arthropods in grasslands: the ground beetle Harpalus rufipes and the wolf spider Trochosa ruricola. The results show that the diet of H. rufipes varied significantly with plant species diversity, consuming more plant material, probably seeds, at high diversity plots, and in the presence of grasses and small herbs. By contrast, in presence of legumes H. rufipes consumed more animal prey, presumably aphids and/or collembolans. Compared to H. rufipes, the diet of T. ruricola consisted of animal prey only and varied mainly with body size, with larger individuals occupying higher trophic position in the food web. Moreover, the diet of T. ruricola changed in response to summer flooding two months before sampling. Presumably, the availability of secondary decomposer prey as well as intraguild prey was increased in severely flooded plots. As both species are considered pest control agents, the results underline the importance of plant diversity and the composition of plant communities for biological pest control.

 

References

Agrawal, A. A., D. D. Ackerly, F. Adler, A. E. Arnold, C. Cáceres, D. F. Doak, E. Post, P. J. Hudson, J. L. Maron, K. A. Mooney, M. Power, D. Schemske, J. Stachowicz, S. Strauss, M. G. Turner & E. Werner (2007): Filling key gaps in population and community ecology. – The Ecological Society of America 5: 145–152.

Akamatsu, F., H. Toda & T. Okino (2004): Food source of riparian spiders analyzed by using stable isotope ratios. Ecological Research 19, 655–662 [https://www.doi.org/10.1111/j.1440-1703.2004.00680.x].

Bàrberi, P., G. Burgio, G. Dinelli, A. C. Moonen, S. Otto, C. Vazzana & G. Zanin (2010): Functional biodiversity in the agricultural landscape: Relationships between weeds and arthropod fauna. – Weed Research 50: 388–401 [https://www.doi.org/10.1111/j.1365-3180.2010.00798.x].

Ben-David, M., D. M. Schell (2001): Mixing models in analyses of diet using multiple stable isotopes: A response. Oecologia 127: 180–184 [https://www.doi.org/10.1007/s004420000570].

Bilde, T. & S. Toft (1994). Prey preference and egg production of the carabid beetle Agonum dorsale. – Entomologia Experimentalis et Applicata 73: 151–156 [https://www.doi.org/10.1111/j.1570-7458.1994.tb01850.x].

Blem, C. R. (1976): Patterns of Lipid Storage and Utilization in Birds. – Integrative and Comparative Biology 16: 671–684 [https://www.doi.org/10.1093/icb/16.4.671].

Bolnick, D. I., R. Svanbäck, J. A. Fordyce, L. H. Yang, J. M. Davis, C. D. Hulsey & M. L. Forister (2003): The ecology of individuals: incidence and implications of individual specialization. – American Naturalist 161: 1–28 [https://www.doi.org/:10.1086/343878].

Brygadyrenko, V. V. & D. Y. Reshetniak (2014): Trophic preferences of Harpalus rufipes (Coleoptera, Carabidae) with regard to seeds of agricultural crops in conditions of laboratory experiment. – Baltic Journal of Coleopterology 14: 179–190.

Buse, T., L. Ruess & J. Filser (2013): New trophic biomarkers for Collembola reared on algal diets. – Pedobiologia 56 [https://www.doi.org/10.1016/j.pedobi.2013.03.005].

Cantor, M., L. A. Ferreira, W. R. Silva & E. Z. F. Setz (2010): Potential seed dispersal by Didelphis albiventris (Marsupialia, Didelphidae) in highly disturbed environment. – Biota Neotropica 10 [https://www.doi.org/10.1590/S1676-06032010000200004].

Chen, B. & D. H. Wise (1999): Bottom-Up Limitation of Predaceous Arthropods in a Detritus-Based Terrestrial Food Web. – Ecology 80: 761–772.

Clark, J. S., M. Dietze, S. Chakraborty, P. K. Agarwal, I. Ibanez, S. LaDeau & M. Wolosin (2007): Resolving the biodiversity paradox. – Ecology Letters 10: 647–659 [doi:10.1111/j.1461-0248.2007.01041.x].

Clough, Y., A. Kruess, D. Kleijn & T. Tscharntke (2005): Spider diversity in cereal fields: Comparing factors at local, landscape and regional scales. – Journal of Biogeography 32: 2007–2014 [https://www.doi.org/10.1111/j.1365-2699.2005.01367.x].

Costea, M., S. E. Weaver & F. J. Tardif (2003): The biology of Canadian weeds. 130. Amaranthus retroflexus L., A.powellii, S. Watson and A. hybridus L. – Anadian Journal of Plant Science 83: 1039–1066.

de Snoo, G. R., R.J. van der Poll & J. de Leeuw (1995): Carabids in sprayed and unsprayed crop edges of winter wheat, sugar beet and potatoes. – In: Riedel, S. T. & W. (Ed.): Arthropod Natural Enemies in Arable Land. I. Density, Spatial Heterogeneity and Dispersal. – Århus, Denmark: 199–211.

Dennis, P., M. R. Young & C. Bentley (2001): The effects of varied grazing management on epigeal spiders, harvestmen and pseudoscorpions of Nardus stricta grassland in upland Scotland. – Agriculture, Ecosystems and Environment 86, 39–57 [https://www.doi.org/10.1016/S0167-8809(00)00263-2].

Denno, R. F., M. S. Mitter, G. A. Langellotto, C. Gratton & D. L. Finke (2004): Interactions between a hunting spider and a web-builder: Consequences of intraguild predation and cannibalism for prey suppression. – Ecological Entomology 29: 566–577 [https://www.doi.org/10.1111/j.0307-6946.2004.00628.x].

Diehl, E., V. Wolters & K. Birkhofer (2012): Arable weeds in organically managed wheat fields foster carabid beetles by resource- and structure-mediated effects. – Arthropod-Plant Interactions 6: 75–82 [https://www.doi.org/10.1007/s11829-011-9153-4].

Ebeling, A., J. Hines, L. R. Hertzog, M. Lange, S. T. Meyer, N. K. Simons & W. W. Weisser (2017): Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. – Basic and Applied Ecology 26: 50–63 [https://www.doi.org/10.1016/J.BAAE.2017.09.014].

Ebeling, A., S. T. Meyer, M. Abbas, N. Eisenhauer, H. Hillebrand, M. Lange, C. Scherber, A. Vogel, A. Weigelt & W. W. Weisser (2014): Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. – PLoS ONE 9: e106529 [https://www.doi.org/10.1371/journal.pone.0106529].

Eitzinger, B. & M. Traugott (2011): Which prey sustains cold-adapted invertebrate generalist predators in arable land? – Examining prey choices by molecular gut-content analysis 591–599 [https://www.doi.org/10.1111/j.1365-2664.2010.01947.x].

Engelhardt, W. (1964): Die mitteleuropäischen arten der gattung Trochosa C. L. Koch, 1848 (araneae, lycosidae). Morphologie, chemotaxonomie, biologie, autökologie. – Zeitschrift für Morphologie und Ökologie der Tiere 54: 219–392 [https://doi.org/10.1007/BF00390678].

Faraway, J. J. (2014): Linear models with R. – CRC Press: 286 p.

Fawki, S. & S. Toft (2005): Food preferences and the value of animal food for the carabid beetle Amara similata (Gyll.) (Col., Carabidae). – Journal of Applied Entomology 129: 551–556 [https://www.doi.org/10.1111/j.1439-0418.2005.00992.551-556].

Ferlian, O. & S. Scheu (2014): Shifts in trophic interactions with forest type in soil generalist predators as indicated by complementary analyses of fatty acids and stable isotopes. – Oikos 123: 1182–1191 [https://www.doi.org/10.1111/j.1600-0706.2013.00848.x].

Ford, M. (1977): Metabolic costs of the predation strategy of the spider Pardosa amentata (Clerck)(Lycosidae). – Oecologia 28: 333–340.

France, R. L. & R. H. Peters (1997). Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Canadian Journal of Fisheries and Aquatic Sciences 54: 1255–1258.

Freude, H., K. W. Harde, G. A. Lohse & B. Klausnitzer (2004): Die Käfer Mitteleuropas, Band 2 Adephaga 1: Carabidae (Laufkäfer) – Spektrum Akademischer Verlag: 521 p.

Frostegård, A., A. Tunlid & E. Baath (1991): Microbial biomass measured as total lipid phosphate in soils of different organic content. – Journal of Microbiological Methods 14: 151–163 [doi:10.1016/0167-7012(91)90018-l].

Fry, B. (1988): Food web structure on Georges Bank from stable C, N, and S isotopic compositions. – Limnology and Oceanography 33: 1182–1190.

Galis, F. & P. W. De Jong (1988): Movements of carabid beetles (Coleoptera: Carabidae) inhabiting cereal fields: a field tracing study. – Water 175–184.

Gallandt, E. R., T. Molloy, R. P. Lynch & F. A. Drummond (2005): Effect of cover-cropping systems on invertebrate seed predation. Weed Science 53: 69–76 [https://www.doi.org/10.1614/ws-04-095r

García, D., M. A. Rodríguez-Cabal, G. C. Amico (2009): Seed dispersal by a frugivorous marsupial shapes the spatial scale of a mistletoe population. – Journal of Ecology 97: 217–229 [https://www.doi.org/10.1111/j.1365-2745.2008.01470.x].

Gratton, C. & A. E. Forbes (2006): Changes in δ13C stable isotopes in multiple tissues of insect predators fed isotopically distinct prey. – Oecologia 147: 615–624 [https://www.doi.org/10.1007/s00442-005-0322-y].

Graziani, F., A. Onofri, E. Pannacci, F. Tei & M. Guiducci (2012): Size and composition of weed seedbank in long-term organic and conventional low-input cropping systems. – European Journal of Agronomy 39: 52–61 [https://doi.org/10.1016/j.eja.2012.01.008].

Griffin, J. N., J. E. K. Byrnes & B. J. Cardinale (2013): Effects of predator richness on prey suppression: A meta-analysis. – Ecology 94: 2180–2187 [https://www.doi.org/10.1890/13-0179.1].

Gubsch M, C. Roscher, G. Gleixner, M. Habekost, A. Lipowsky, B. Schmid, E.-D. Schulze, S. Steinbeiss & N. Buchmann (2011): Foliar and soil δ15N values reveal increased nitrogen partitioning among species in diverse grassland communities. – Plant, Cell and Environment 34: 895–908 [https://www.doi.org/ 10.1111/j.1365-3040.2011.02287.x].

Haddad, N. M., G. M. Crutsinger, K. Gross, J. Haarstad, J. M. H. Knops & D. Tilman (2009): Plant species loss decreases arthropod diversity and shifts trophic structure. – Ecology Letters 12: 1029–1039 [https://www.doi.org/10.1111/j.1461-0248.2009.01356.x].

Haines, E. B. & C. L. Montague (1979): Food sources of estuarine invertebrates analyzed using 13C/12C ratios. –Ecology 60: 48–56.

Halaj, J., R. W. Peck & C. G. Niwa (2005): Trophic structure of a macroarthropod litter food web in managed coniferous forest stands: A stable isotope analysis with δ15N and δ13C. – Pedobiologia 49: 109–118 [https://www.doi.org/10.1016/j.pedobi.2004.09.002].

Harrison, S. & E. R. Gallandt (2012). Behavioural studies of Harpalus rufipes de geer: An important weed seed predator in northeastern US agroecosystems. – International Journal of Ecology 2012 [doi:10.1155/2012/846546].

Harrison, S. K., E. E. Regnier & J. T. Schmoll (2003): Postdispersal predation of giant ragweed (Ambrosia trifida) seed in no-tillage corn. Weed Science 51: 955–964 [https://www.doi.org/10.1614/P2002-110].

Hartke, A., F. A. Drummond & M. Liebman (1998): Seed feeding, seed caching, and burrowing behaviors of Harpalus rufipes De Geer Larvae (Coleoptera: Carabidae) in the Maine potato agroecosystem. – Biological Control 13: 91–100 [https://www.doi.org/10.1006/bcon.1998.0645].

Haubert, D., M. M. Häggblom, S. Scheu & L. Ruess, (2004): Effects of fungal food quality and starvation on the fatty acid composition of Protaphorura fimata (Collembola). Comparative Biochemistry and Physiology – B Biochemistry and Molecular Biology 138: 41–52 [https://www.doi.org/10.1016/j.cbpc.2004.02.009].

Hobson, K. A., A. Fisk, N. Karnovsky, M. Holst, J. M. Gagnon & M. Fortier (2002): A stable isotope (δ13C, δ15N) model for the North Water food web: Implications for evaluating trophodynamics and the flow of energy and contaminants. – Deep-Sea Research Part II: Topical Studies in Oceanography 49: 5131–5150 [https://www.doi.org/10.1016/S0967-0645(02)00182-0].

Hooper, D. U., F. S. I. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau,

S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer & D. A. Wardle (2005): Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. – Ecological Monographs 75: 3–35 [https://www.doi.org/10.1890/04-0922].

Ikeda, H., K. Kubota, A. Kagawa & T. Sota (2010): Diverse diet compositions among harpaline ground beetle species revealed by mixing model analyses of stable isotope ratios. Ecological Entomology 35: 307–316 [https://www.doi.org/10.1111/j.1365-2311.2010.01182.x].

Kajak, A. (1995): The role of soil predators in decomposition processes. – European Journal of Entomology [doi:10.14411/eje.1995.073].

Kielty, J. P., L. J. Allen-Williams & N. Underwood (1999): Prey preferences of six species of Carabidae (Coleoptera) and one Lycosidae (Araneae) commonly found in UK arable crop fields. – Journal of Applied Entomology 123: 193–200 [https://www.doi.org/10.1046/j.1439-0418.1999.00355.x].

Kokta, C. (1988): Beziehungen zwischen der Verunkrautung und phytophagen Laufkäfern der Gattung Amara. – Mitteilungen der biologischen Bundesanstalt für Land- und Forstwirtschaft 247: 139–145.

König, T., R. Kaufmann & S. Scheu (2011): The formation of terrestrial food webs in glacier foreland: Evidence for the pivotal role of decomposer prey and intraguild predation. – Pedobiologia 54: 147–152 [https://www.doi.org/10.1016/j.pedobi.2010.12.004].

Kromp, B. (1999): Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. – In: Paoletti, M. G. (Ed.): Agriculture, ecosystems and environment. – Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes 74: 187–228.

Kulkarni, S. S., L. M. Dosdall & C. J. Willenborg (2015): The Role of Ground Beetles (Coleoptera: Carabidae) in Weed Seed Consumption: A Review. – Weed Science 63: 355–376 [https://www.doi.org/10.1614/WS-D-14-00067.1].

Langel, R. & J. Dyckmans (2014): Combined 13C and 15N isotope analysis on small samples using a near-conventional elemental analyzer/isotope ratio mass spectrometer setup. – Rapid Communications in Mass Spectrometry 28: 1019–1022 [https://www.doi.org/10.1002/rcm.6878].

Langellotto, G. A., & R. F. Denno (2004): Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. – Oecologia 139: 1–10 [https://www.doi.org/10.1007/s00442-004-1497-3].

Lau, D. C. P., K. M. Y. Leung & D. Dudgeon (2008): Experimental dietary manipulations for determining the relative importance of allochthonous and autochthonous food resources in tropical streams. – Freshwater Biology 53: 139–147 [https://www.doi.org/10.1111/j.1365-2427.2007.01873.x].

Layman, C.A., M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post & S. Bearhop (2012):. Applying stable isotopes to examine food-web structure: An overview of analytical tools. – Biological Reviews 87, 545–562 [https://www.doi.org/10.1111/j.1469-185X.2011.00208.x].

Lee, J. C., F. D. Menalled & D. A. Landis (2001): Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. – Journal of Applied Ecology 38: 472–483 [https://www.doi.org/10.1046/j.1365-2664.2001.00602.x].

Lensing, J. R. & D. H. Wise (2004). A test of the hypothesis that a pathway of intraguild predation limits densities of a wolf spider. – Ecological Entomology 29: 294–299 [https://www.doi.org/10.1111/j.0307-6946.2004.00601.x].

Loranger, H., W. W. Weisser, A. Ebeling, T. Eggers, E. De Luca, J. Loranger, C. Roscher & S. T. Meyer (2014): Invertebrate herbivory increases along an experimental gradient of grassland plant diversity. – Oecologia 174: 183–193 [https://www.doi.org/10.1007/s00442-013-2741-5].

Lund, R.D. & F. T. Turpin (1977):. Carabid Damage to Weed Seeds Found in Indiana Cornfields. – Environmental Entomology 6: 695–698 [https://www.doi.org/10.1093/ee/6.5.695].

Martinez del Rio, C. & B. O. Wolf (2005): Mass balance models for animal isotopic ecology. – Physiological and Ecological Adaptations to Feeding in Vertebrates 141–174.

McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby (2006): Rebuilding community ecology from functional traits. – Trends in Ecology and Evolution 21: 178–185 [https://www.doi.org/10.1016/j.tree.2006.02.002].

Menalled, F. D., M. Liebman, K. A. Renner, H. P. Singh, D. R. Batish & R. Kohli (2006): The ecology of weed seed predation in herbaceous crop systems. – Handbook of Sustainable Weed Management: 297–327.

Michener, R. H. & K. Lajtha (2007): Stable isotopes in ecology and environmental science, Ecological methods and concepts series. – Blackwell Publishing: 594 p [https://www.doi.org/10.1899/0887-3593-028.002.0516].

Milcu, A., S. Partsch, C. Scherber, W. W. Weisser & S. Scheu (2008): Earthworms and legumes control litter decomposition in a plant diversity gradient. – Ecology 89: 1872–1882 [https://www.doi.org/10.1890/07-1377.1].

Mundy, C. A., L. J. Allen-Williams, N. Underwood & S. Warrington (2000): Prey selection and foraging behaviour by Pterostichus cupreus L . ( Col ., Carabidae ) under laboratory conditions. – Journal of Applied Entomology 124: 349–358.

Öberg, S. & B. Ekbom (2006): Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. – Annals of Applied Biology 149: 203–211 [https://www.doi.org/10.1111/j.1744-7348.2006.00088.x].

Oelbermann, K. & S. Scheu (2002): Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): Effects of prey quality. – Oecologia 130: 337–344 [https://www.doi.org/10.1007/s004420100813].

Pond, C. M. (1981): Storage. – In: Townsend, C. R., P. Calow (Eds): Physiological Ecology: An Evolutionary Approach to Resource Use. – Blackwell, London: 190–219.

Post, D. M. (2002): Using Stable Isotopes to Estimate Trophic Position: Models, Methods, and Assumptions 83: 703–718.

Potapov, A. M., A. Y. Korotkevich & A. V. Tiunov (2018): Non-vascular plants as a food source for litter-dwelling Collembola: Field evidence. – Pedobiologia 66: 11–17 [https://www.doi.org/10.1016/j.pedobi.2017.12.005].

Potapov, A.M., A. V. Tiunov & S. Scheu (2019): Uncovering the structure of soil food webs using bulk natural stable isotope composition. – Biological Reviews 94: 37–59.

Preukschas, J., M. Zeiter, M. Fischer & A. Stampfli (2014): Biotic resistance to plant invasion in grassland: Does seed predation increase with resident plant diversity? – Basic and Applied Ecology 15: 133–141 [https://www.doi.org/10.1016/j.baae.2014.01.004].

Purtauf, T., J. Dauber & V. Wolters (2004): Carabid communities in the spatio-temporal mosaic of a rural landscape. – Landscape and Urban Planning 67: 185–193 [https://www.doi.org/10.1016/S0169-2046(03)00038-0].

R Development Core Team (2012): R: A language and environment for statistical computing.

Ramsey, P. W., M. C. Rillig, K. P. Feris, W. E. Holben, J. E. Gannon (2006): Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. – Pedobiologia 50: 275–280 [https://www.doi.org/10.1016/j.pedobi.2006.03.003].

Reineking, A., R. Langel & J. Schikowski (1993): 15N, 13C-On-line Measurements with an Elemental Analyser (Carlo Erba, NA 1500), a Modified Trapping Box and a Gas Isotope Mass Spectrometer (Finnigan, MAT 251). – Isotopenpraxis Isotopes in Environmental and Health Studies 29: 169–174 [https://www.doi.org/10.1080/10256019308046151].

Riechert, S. & J. Harp (1987): Nutritional ecology of spiders. In: Slansky, F. J. & J. Rodriguez (Eds.): Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. – Wiley, New York: 645–672.

Riede, J. O., U. Brose, B. Ebenman, U. Jacob, R. Thompson, C. R. Townsend & T. Jonsson (2011): Stepping in Elton’s footprints: A general scaling model for body masses and trophic levels across ecosystems. – Ecology Letters 14: 169–178 [https://www.doi.org/10.1111/j.1461-0248.2010.01568.x].

Roeder, K. A. & S. T. Behmer (2014): Lifetime consequences of food protein-carbohydrate content for an insect herbivore. Functional. – Ecology 28: 1135–1143 [https://www.doi.org/10.1111/1365-2435.12262].

Romero, S. A. & J. D. Harwood (2010): Diel and seasonal patterns of prey available to epigeal predators: Evidence for food limitation in a linyphiid spider community. – Biological Control 52: 84–90 [https://www.doi.org/10.1016/J.BIOCONTROL.2009.09.013

Roscher, C., W. L. Kutsch & E. D. Schulze (2010): Light and nitrogen competition limit Lolium perenne in experimental grasslands of increasing plant diversity. – Plant Biology 13: 134–144 [https://www.doi.org/10.1111/j.1438-8677.2010.00338.x].

Roscher, C., J. Schumacher, J. Baade, W. Wilcke, G. Gleixner, W. W. Weisser, B. Schmid & E. Schulze (2004): The role of biodiversity for element cycling and trophic interactions : an experimental approach in a grassland community. – Basic and Applied Ecologyasic 5: 107–121.

Ruess, L. & P. M. Chamberlain (2010): The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. – Soil Biology and Biochemistry 42: 1898–1910 [https://www.doi.org/10.1016/j.soilbio.2010.07.020].

Ruess, L., M. M. Häggblom, E. J. Garcı́a Zapata & J. Dighton (2002): Fatty acids of fungi and nematodes—possible biomarkers in the soil food chain? – Soil Biology and Biochemistry 34: 745–756 [https://www.doi.org/10.1016/S0038-0717(01)00231-0].

Ruess, L., M. M. Häggblom, R. Langel & S. Scheu (2004): Nitrogen isotope ratios and fatty acid composition as indicators of animal diets in belowground systems. – Oecologia 139: 336–46 [doi:10.1007/s00442-004-1514-6].

Sabais, A. C. W., S. Scheu & N. Eisenhauer (2011): Plant species richness drives the density and diversity of Collembola in temperate grassland. – Acta Oecologica 37: 195–202 [https://www.doi.org/10.1016/j.actao.2011.02.002].

Schaefer, M. (2010): Brohmer – Fauna von Deutschland, 23rd ed. – Wiebelsheim, Quelle & Meyer.

Schmid, B., A. Hector, M. Huston, P. Inchausti, I. Nijs, P. Leadley & D. Tilman (2002): The design and analysis of biodiversity experiments. – In: Press, O. U. (Ed.): Biodiversity and Ecosystem Functioning: Synthesis and Perspectives: 61–78.

Schmitz, O. J. (2003): Top predator control of plant biodiversity and productivity in an old-field ecosystem. – Ecology Letters 6: 156–163 [https://www.doi.org/10.1046/j.1461-0248.2003.00412.x].

Schneider, F. D., S. Scheu & U. Brose (2012): Body mass constraints on feeding rates determine the consequences of predator loss. – Ecology Letters 15: 436–443 [doi:10.1111/j.1461-0248.2012.01750.x].

Shearin, A. F., S. Chris Reberg-Horton, E. R. Gallandt (2008): Cover Crop Effects on the Activity-Density of the Weed Seed Predator Harpalus rufipes (Coleoptera: Carabidae). – Weed Science 56: 442–450 [https://www.doi.org/10.1614/WS-07-137.1].

Sih, A., A. Bell & J. C. Johnson (2004): Behavioral syndromes: An ecological and evolutionary overview. – Trends in Ecology and Evolution 19: 372–378 [https://www.doi.org/10.1016/j.tree.2004.04.009

Snyder, W. E., G. B. Snyder, D. L. Finke & C. S. Straub (2006): Predator biodiversity strengthens herbivore suppression. – Ecology Letters 9: 789–796 [https://www.doi.org/10.1111/j.1461-0248.2006.00922.x]

Spehn, E. M., M. Scherer-Lorenzen, B. Schmid, A. Hector,

M. C.Caldeira, P. G. Dimitrakopoulos, J. A. Finn, A. Jumpponen, G. O’Donnovan, J. S. Pereira, E. D. Schulze, A. Y. Troumbis & C. Körner (2002): The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. – Oikos 98: 205–218 [https://www.doi.org/10.1034/j.1600-0706.2002.980203.x].

Sunderland, K. (1999): Mechanisms Underlying the Effects of Spiders on Pest Populations. – The Journal of Arachnology 27: 308–316 [https://www.doi.org/10.2307/3706002].

Symondson, W. O. C., K. D. Sunderland & M. H. Greenstone, (2002): D Iffusion of E Ffective B Ehavioral. – Annual Review Entomology 47: 561–594 [https://www.doi.org/10.1146/annurev.ento.47.091201.145240].

Ter Braak, C. J. F. & P. Smilauer (2012): Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.0). – Microcomputer Power, Ithaca, USA.

Tiunov, A. V. (2007): Stable isotopes of carbon and nitrogen in soil ecological studies. – Biology Bulletin 34: 395–407 [https://www.doi.org/10.1134/S1062359007040127].

Toft, S. (1995): Value of the Aphid Rhopalosiphum padi as Food for Cereal Spiders. – Journal of Applied Ecology 32: 552–560 [https://www.doi.org/10.2307/2404652].

Toft, S. & D. H. Wise (1999b) Growth, development, and survival of a generalist predator fed single- and mixed-species diets of different quality. – Oecologia 119: 191–197 [https://www.doi.org/10.1007/s004420050776].

Toft, S. & D. H. Wise (1999a): Behavioral and ecophysiological responses of a generalist predator to single- and mixed-species diets of different quality. – Oecologia 119: 198–207 [https://www.doi.org/10.1007/s004420050777].

Uetz, G. W. (1991): Habitat structure and spider foraging. – In: McCoy, E. D., S. S. Bell & H. R. Mushinsky (Ed.): Habitat Structure: The Physical Arrangement of Objects in Space. – Chapman and Hall, London: 325–348.

Vanderklift, M. A. & S. Ponsard (2003): Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. – Oecologia 136: 169–182 [https://www.doi.org/10.1007/s00442-003-1270-z

Vieira, E. M. & D. Port (2007): Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. – Journal of Zoology 272: 57–63 [https://www.doi.org/10.1111/j.1469-7998.2006.00237.x].

Vockenhuber, E., P. Kabouw, T. Tscharntke & C. Scherber (2013): Plant–animal interactions in two forest herbs along a tree and herb diversity gradient. – Plant Ecology & Diversity 6: 205–216 [https://www.doi.org/10.1080/17550874.2013.782368].

Wagner, D., N. Eisenhauer & S. Cesarz (2015): Plant species richness does not attenuate responses of soil microbial and nematode communities to a flood event. – Soil Biology and Biochemistry 89: 135–149 [https://www.doi.org/10.1016/j.soilbio.2015.07.001].

Wilby, A. & M. B. Thomas (2002): Natural enemy diversity and pest control: patters of pest emergence with agricultural intensification. – Ecology Letters 5: 353–360 [doi:10.1046/j.1461-0248.2002.00331.x].

Wise, D. H. (1993): Spiders in ecological webs. – Cambridge University Press, Cambridge: 328 p.

Wise, D. H., D. M. Moldenhauer & J. Halaj (2006): Using Stable Isotopes to Reveal Shifts in Prey Consumption by Generalist Predators. – Ecological Applications 16: 865–876.

Wright, A. J., A. Ebeling, H. de Kroon, C. Roscher, A. Weigelt, N. Buchmann, T. Buchmann, C. Fischer, N. Hacker,

A. Hildebrandt, S. Leimer, L. Mommer, Y. Oelmann, S. Scheu, K. Steinauer, T. Strecker, W. Weisser, W. Wilcke &

N. Eisenhauer (2015): Flooding disturbances increase resource availability and productivity but reduce stability in diverse plant communities. – Nature Communications 6: 6092 [https://www.doi.org/10.1038/ncomms7092].

Zhang, J. X., F. A. Drummond, M. Liebman & A. Hartke (1997): Phenology and dispersal of Harpalus rufipes DeGeer (Coleoptera: Carabidae) in agroecosystems in Maine. – Journal of Agricultural Entomology 14: 171–186.

Zuur, A., E. N. Ieno & G. M. Smith (2007): Analysing Ecological Data. – Springer-Verlag New York: 672 p [https://www.doi.org/10.1007/978-0-387-45972-1].

Downloads

Published

2019-08-01

How to Cite

González Macé, O. ., Ebeling, A. ., Eisenhauer, N., Cesarz, S. ., & Scheu, S. . (2019). Variations in trophic niches of generalist predators with plant community composition as indicated by stable isotopes and fatty acids. SOIL ORGANISMS, 91(2), 45–59. https://doi.org/10.25674/so91204

Issue

Section

ARTICLES