Experimental warming weakens positive plant diversity effects on pitfall trap sampled ant diversity
DOI:
https://doi.org/10.25674/so94iss1id177Keywords:
ant, climate change, community ecology, diversity loss, experimental warmingAbstract
Ants are important components of many terrestrial ecosystems because of their high abundance, their central position in food webs, and because they can strongly influence ecosystem properties such as soil aeration, nutrient cycling, and plant community composition. Moreover, ants are also known to respond strongly to changes in environmental and biological conditions. In particular, two major anthropogenic environmental impacts – climate change and the loss of primary producers – may have interactive effects on ant communities. To examine this potential interaction, we quantified pitfall trap sampled ant diversity and activity across a fully factorial experiment manipulating temperature and grassland plant species richness at the Cedar Creek Ecosystem Science Reserve in Minnesota, USA. Consistent with previous arthropod studies, we found a significant increase in sampled ant diversity in plots with higher sown plant species richness, such that plots with the largest number of plant species also had the highest sampled ant diversity. However, the strength of this relationship declined significantly in experimentally warmed subplots, especially when considered for higher aggregated spatial scales of samples. Taken together, these results suggest that the positive effects of plant diversity on sampled ant diversity may be partially undermined under warmer conditions.
Downloads
References
Bates, D., M. Mächler, B. Bolker & S. Walker (2015): Fitting Linear Mixed-Effects Models Using lme4. – Journal of Statistical Software 67.
Bell, J. E., R. Sherry & Y. Luo (2010): Changes in soil water dynamics due to variation in precipitation and temperature. – An ecohydrological analysis in a tallgrass prairie: Water Resources Research 46.
Bolton, B. (2006): Bolton’s catalogue of ants of the world, 1758-2005. – Cambridge, Mass., Harvard University Press.
Boyd, R. S. (2001): Ecological benefits of myrmecochory for the endangered chaparral shrub Fremontodendron decumbens (Sterculiaceae). – American Journal of Botany 88: 234–241.
de Bruyn, L. A. L. (1999): Ants as bioindicators of soil function in rural environments. – Agriculture Ecosystems & Environment 74: 425–441.
Bujan, J., K. A. Roeder, K. Beurs, M. D. Weiser & M. Kaspari (2020): Thermal diversity of North American ant communities: Cold tolerance but not heat tolerance tracks ecosystem temperature. – Global Ecology and Biogeography 29: 1486–1494 [http://doi.org/10.1111/geb.13121].
Cardinale, B. (2012): Impacts of Biodiversity Loss. – Science 336: 552–553 [http://doi.org/10.1126/science.1222102].
Cerda, X., J. Retana & S. Cros (1998): Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. – Functional Ecology 12: 45–55.
Clark, A. T., J. M. H. Knops & D. Tilman (2019): Contingent factors explain average divergence in functional composition over 88 years of old field succession. – Journal of Ecology 107: 545–558 [http://doi.org/10.1111/1365-2745.13070].
Clark, A. T., J. J. Rykken & B. D. Farrell (2011): The Effects of Biogeography on Ant Diversity and Activity on the Boston Harbor Islands, Massachusetts, USA. – Plos One 6: 11.
Colwell, R. K., A. Chao, N. J. Gotelli, S.-Y. Lin, C. X. Mao, R. L. Chazdon & J. T. Longino (2012): Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. – Journal of Plant Ecology 5: 3–21 [http://doi.org/10.1093/jpe/rtr044].
Coovert, G. A. (2005): The ants of Ohio (Hymenoptera: Formicidae). – Bulletin of the Ohio Biological Survey 15: 1–196.
Cowles, J. M., P. D. Wragg, A. J. Wright, J. S. Powers & D. Tilman (2016): Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. – Global Change Biology 22: 741–749 [http://doi.org/10.1111/gcb.13111].
Del Toro, I. (2013): Diversity of Eastern North American Ant Communities along Environmental Gradients. – PLoS ONE 8: e67973 [http://doi.org/10.1371/journal.pone.0067973].
Del Toro, I., R. R. Ribbons & S. L. Pelini (2012): The little things that run the world revisited : a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). – Myrmecological News 17: 133–146.
Del Toro, I., R. R. Silva & A. M. Ellison (2015): Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests. – Diversity and Distributions 21: 781–791 [http://doi.org/10.1111/ddi.12331].
Diamond, M., D. Sorger, J. Hulcr, S.L. Pelini, D.T. Israel, C. Hirsch, E. Oberg & R.R. Dunn (2011): Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. – Conservation Biology.
Diamond, L. M. Nichols, S. L. Pelini, C. A. Penick, G. W. Barber, S. H. Cahan, R. R. Dunn, A. M. Ellison, N. J. Sanders & N. J. Gotelli (2016): Climatic warming destabilizes forest ant communities. – Science Advances 2: e1600842 [http://doi.org/10.1126/sciadv.1600842].
Eisenhauer, N., T. Dobies, S. Cesarz, S. E. Hobbie, R. J. Meyer, K. Worm & P. B. Reich (2013): Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. – Proceedings of the National Academy of Sciences 110: 6889–6894 [http://doi.org/10.1073/pnas.1217382110].
Ellison, A. & R. Dunn (2021): (Ants) Under Climate Change at Harvard Forest and Duke Forest 2009-2015. – Environmental Data Initiative [http://doi.org/10.6073/PASTA/4F6E15DCFD1ABFA62F2C582F39804730].
Ellison, A. M., N. J. Gotelli, E. J. Farnsworth & G. D. Alpert (2012): A field guide to the ants of New England. – New Haven [Conn.], Yale University Press: 398 p.
Ellison, A. M., S. Record, A. Arguello & N. J. Gotelli (2007): Rapid inventory of the ant assemblage in a temperate hardwood forest: species composition and sampling methods. – Environmental Entomology 36: 766–775.
Fisher, B. & S. Cover (2007): Ants of North America: a guide to the genera. – Berkeley, CA, University of California Press.
Folgarait, P. J. (1998): Ant biodiversity and its relationship to ecosystem functioning: a review. – Biodiversity and Conservation 7: 1221–1244.
Gibb, H., B. F. Grossman, C. R. Dickman, O. Decker & G. M. Wardle (2019): Long‐term responses of desert ant assemblages to climate. – Journal of Animal Ecology 88: 1549–1563 [http://doi.org/10.1111/1365-2656.13052].
Gotelli, N. J. & R. K. Colwell (2001): Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. – Ecology Letters 4: 379–391.
Gotelli, N. J., A. M. Ellison, R. R. Dunn & N. J. Sanders (2011): Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for myrmecologists. – Myrmecological News 15: 13–19.
Grace, J. B., T. M.Anderson, E. W. Seabloom, E.T. Borer, P. B. Adler, W. S. Harpole, Y. Hautier, H. Hillebrand, E. M. Lind, M. Pärt & et al. (2016): Integrative modelling reveals mechanisms linking productivity and plant species richness. – Nature 529: 390–393 [http://doi.org/10.1038/nature16524].
Haddad, N. M., G. M. Crutsinger, K. Gross, J. Haarstad, J. M. H. Knops & D. Tilman (2009): Plant species loss decreases arthropod diversity and shifts trophic structure. – Ecology letters 12: 1029–1039.
Haddad, N. M., D. Tilman, J. Haarstad, M. Ritchie & J. M. H. Knops (2001): Contrasting effects of plant richness and composition on insect communities: A field experiment. – American Naturalist 158: 17–35.
Haegeman, B., J. Hamelin, J. Moriarty, P. Neal, J. Dushoff & J. S. Weitz (2013): Robust estimation of microbial diversity in theory and in practice. – The ISME Journal 7: 1092–1101 [http://doi.org/10.1038/ismej.2013.10].
Huey, R. B., M. R. Kearney, A. Krockenberger, J. A. M. Holtum, M. Jess & S. E. Williams (2012): Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. – Philosophical Transactions of the Royal Society B: Biological Sciences 367: 1665–1679 [http://doi.org/10.1098/rstb.2012.0005].
Human, K. G. & D. M. Gordon (1997): Effects of Argentine ants on invertebrate biodiversity in northern California. – Conservation Biology 11: 1242–1248.
Jost, L. (2007): Partitioning diversity into independent alpha and beta components. – Ecology 88: 2427–2439.
Kaspari, M., L. Alonso & S. O’Donnell (2000): Three energy variables predict ant abundance at a geographical scale. – Proceedings of the Royal Society B: Biological Sciences 267: 485–489.
Kaspari, M., J. Bujan, K. A. Roeder, K. Beurs & M. D. Weiser (2019): Species energy and Thermal Performance Theory predict 20‐yr changes in ant community abundance and richness. – Ecology 100: 12 [http://doi.org/10.1002/ecy.2888].
Kay, C. A. R. & W. G. Whitford (1978): Critical thermal limits of desert honey ants - Possible ecological implications. – Physiological Zoology 51: 206–213.
Korzukhin, M. D., S. D. Porter, L. C. Thompson & S. Wiley (2001): Modeling Temperature-Dependent Range Limits for the Fire Ant Solenopsis invicta (Hymenoptera: Formicidae) in the United States. – Environmental Entomology 30:
–655 [http://doi.org/10.1603/0046-225X-30.4.645].
LaPolla, J., P. Hawkes & J. N. Fisher (2013): Taxonomic review of the ant genus Paratrechina, with a description of a new species from Africa. – Journal of Hymenoptera Research 35: 71–82 [http://doi.org/10.3897/jhr.35.5628].
Leibold, M. A. & J. M. Chase (2018): Metacommunity Ecology, Volume 59. – Princeton University Press.
May, F., K. Gerstner, D. J. McGlinn, X. Xiao & J. M. Chase (2017): mobsim: An R package for the simulation and measurement of biodiversity across spatial scales. – Methods in Ecology and Evolution 9: 1401–1408 [http://doi.org/10.1101/209502].
McGlynn, T. P., R. A. Carr, J. H. Carson & J. Buma (2004): Frequent nest relocation in the ant Aphaenogaster araneoides: resources, competition & natural enemies. – Oikos 106: 611–621.
Oberg, E., I. Del Toro & S. Pelini (2011): Characterization of the thermal tolerances of forest ants of New England. – Insectes Sociaux.
Parmesan, C. & M. E. Hanley (2015): Plants and climate change: complexities and surprises. – Annals of Botany 116: 849–864 [http://doi.org/10.1093/aob/mcv169].
Pelini, S. L., Diamond, L. M. Nichols, K. L. Stuble, A. M. Ellison, N. J. Sanders, R. R. Dunn & N. J. Gotelli (2014): Geographic differences in effects of experimental warming on ant species diversity and community composition. – Ecosphere 5: art125 [http://doi.org/10.1890/ES14-00143.1].
R. Development Core Team (2019): R: a language and environment for statistical computing. – R Foundation for Statistical Computing.
Scherber, C., N. Eisenhauer, W. W. Weisser, B. Schmid, W. Voigt, M. Fischer, E.-D. Schulze, C. Roscher, A. Weigelt, E. Allan & et al. (2010): Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. – Nature 468: 553–556 [http://doi.org/10.1038/nature09492].
Schuldt, A., A. Ebeling, M. Kunz, M. Staab, C. Guimarães-Steinicke, D. Bachmann, N. Buchmann, W. Durka, A. Fichtner, F. Fornoff & et al. (2019): Multiple plant diversity components drive consumer communities across ecosystems. – Nature Communications 10: 1460 [http://doi.org/10.1038/s41467-019-09448-8].
Seifert, B. (2017): The ecology of Central European non-arboreal ants – 37 years of a broad-spectrum analysis under permanent taxonomic control. – Soil Organisms 89: 1–67.
Sullivan, L. L., A. T. Clark, D. Tilman & A. K. Shaw (2018): Mechanistically derived dispersal kernels explain species‐level patterns of recruitment and succession. – Ecology 99: 2415–2420 [http://doi.org/10.1002/ecy.2498].
Thakur, M. P., D. Tilman, O. Purschke, M. Ciobanu, J. Cowles, F. Isbell, P. D. Wragg & N. Eisenhauer (2017): Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments. – Science Advances 3: e1700866 [http://doi.org/10.1126/sciadv.1700866].
Tilman, D. (2018a): BAC: Biodiversity and Climate. Ant responses to experimental warming and plant diversity. Environmental Data Initiative [http://doi.org/10.6073/PASTA/1991371638F8E2EFC783F6BDD04CF80C].
Tilman, D. (2018b): BAC: Biodiversity and Climate. Daily mean iButton soil and air temp, air relative humidity. –Environmental Data Initiative [http://doi.org/10.6073/PASTA/1333B6C2CDA080536479B918D8CAA483].
Tilman, D. (2018c): BAC: Biodiversity and Climate. Plant aboveground biomass data. Environmental Data Initiative [http://doi.org/10.6073/PASTA/214B327BC6FC0A240EC705B339E6DD83].
Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie & E. Siemann (1997): The influence of functional diversity and composition on ecosystem processes. – Science 277: 1300–1302.
Trager, J. C., J. A. MacGown & M. D. Trager (2007): Revision of the Nearctic endemic Formica pallidefulva group, in Advances in ant systematics (Hymenoptera: Formicidae): homage to E. O. Wilson – 50 years of contributions. – Memoirs of the American Entomological Institute 80: 610–636.
Wagner, D., M. J. F. Brown & D. M. Gordon (1997): Harvester ant nests, soil biota and soil chemistry. – Oecologia 112: 232–236.
Whittington, H. R., D. Tilman & J. S. Powers (2013): Consequences of elevated temperatures on legume biomass and nitrogen cycling in a field warming and biodiversity experiment in a North American prairie. – Functional Plant Biology 40: 1147.
Wilson, E. O. (1987): The little things that run the world. (The importance and conservation of invertebrates). – Conservation Biology 1: 344–346.
Wright, A., S. A. Schnitzer & P. B. Reich (2014): Living close to your neighbors: the importance of both competition and facilitation in plant communities. – Ecology 95: 2213–2223 [http://doi.org/10.1890/13-1855.1].
Downloads
Additional Files
Published
Issue
Section
License
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.