Climate change effects on earthworms - a review

  • Jaswinder Singh Department of Zoology, Khalsa College Amritsar, G.T Road, 143002 Punjab, India; Department Community Ecology, Helmholtz - Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06110 Halle, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
  • Martin Schädler Department Community Ecology, Helmholtz - Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06110 Halle, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
  • Wilian Demetrio Departamento de Solos e Engenharia Agrícola, Universidade Federal do Paraná, Rua dos Funcionários 1540, 80035-050 Curitiba, Brazil
  • George G. Brown Departamento de Solos e Engenharia Agrícola, Universidade Federal do Paraná, Rua dos Funcionários 1540, 80035-050 Curitiba, Brazil; Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Forestry, Estrada da Ribeira Km. 111, 83411-000 Colombo, Brazil
  • Nico Eisenhauer Department Community Ecology, Helmholtz - Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06110 Halle, Germany; Leipzig University, Institute of Biology, Deutscher Platz 5e, 04103 Leipzig, Germany
Keywords: Biodiversity, Climate change, Climate drivers, Cocoons, Earthworm invasions, Soil organisms

Abstract

Climate change can have a plethora of effects on organisms above and below the ground in terrestrial ecosystems. Given the tremendous biodiversity in the soil and the many ecosystem functions governed by soil organisms, the drivers of soil biodiversity have received increasing attention. Various climatic factors like temperature, precipitation, soil moisture, as well as extreme climate events like drought and flood have been shown to alter the composition and functioning of communities in the soil. Earthworms are important ecosystem engineers in the soils of temperate and tropical climates and play crucial roles for many ecosystem services, including decomposition, nutrient cycling, and crop yield. Here, we review the published literature on climate change effects on earthworm communities and activity. In general, we find highly species- and ecological group-specific responses to climate change, which are likely to result in altered earthworm community composition in future ecosystems. Earthworm activity, abundance, and biomass tend to increase with increasing temperature at sufficiently high soil water content, while climate extremes like drought and flooding have deleterious effects. Changing climate conditions may facilitate the invasion of earthworms at higher latitudes and altitudes, while dryer and warmer conditions may limit earthworm performance in other regions of the world. The present summary of available information provides a first baseline for predictions of future earthworm distribution. It also reveals the shortage of studies on interacting effects of multiple global change effects on earthworms, such as potential context-dependent effects of climate change at different soil pollution levels and across ecosystem types.

References

Adis, J. & G. Righi (1989): Mass migration and life cycle adaptation – a survival strategy of terrestrial earthworms in Central Amazonian inundation forest. – Amazoniana 11: 23–30.

Andriuzzi, W. S., M. M. Pulleman, O. Schmidt, J. H. Faber & L. Brussaard (2015): Anecic earthworms (Lumbricus terrestris) alleviate negative effects of extreme rainfall events on soil and plants in field mesocosms. – Plant Soil 397: 103–113.

Anh, P. T. Q., T. Gomi, L. H. MacDonald, S. Mizugaki, P. V. Khoa & T. Furuichi (2014): Linkages among land use, macronutrient levels, and soil erosion in northern Vietnam: a plot-scale study. – Geoderma 232–234: 352–362.

Ausden, M., W. J. Sutherland & R. James (2001): The effects of flooding lowland wet grassland on soil macroinvertebrate prey of breeding wading birds. – Journal of Applied Ecology 38: 320–338.

Ayres, I. & R. A. T. Guerra (1981): Água como fator limitante na distribuição das minhocas (Annelida, Oligochaeta) da Amazônia Central. – Acta Amazonica 11: 77–86.

Baker, G. H., V. J. Barrett, M. R. Carter, P. M. L. Williams & J. C. Buckerfield (1993): Seasonal changes in the abundance of earthworms (Annelida: Lumbricidae and Ancanthodrilidae) in soils used for cereal and lucerne production in South Australia. – Australian Journal of Agricultural research. 44: 1291–1301.

Bardgett, R. D. & W. H. van der Putten (2014): Belowground biodiversity and ecosystem functioning. – Nature 515: 505–511.

Bates, B. C., Z. W. Kundzewicz, S. Wu & J. P. Palutikof (eds) (2008): ‘Climate Change and Water’. Technical Paper of the Intergovernmental Panel on Climate Change. – Geneva: IPCC Secretariat.

Bayley, M., J. Overgaard, A. S. Høj, A. Malmendal, N. C. Nielsen, M. Holmstrup & T. Wang (2010): Metabolic changes during estivation in the common earthworm Aporrectodea caliginosa. – Physiological and Biochemical Zoology 83: 541–550.

Beier, C., C. Beierkuhnlein, T. Wohlgemuth, J. Penuelas, B. Emmett, C. Körner, H. de Boeck, J. H. Christensen, S. Leuzinger, I. A. Janssens & K. Hansen (2012): Precipitation manipulation experiments–challenges and recommendations for the future. – Ecology Letters 15: 899–911.

Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller & F. Courchamp (2012): Impacts of climate change on the future of biodiversity. – Ecology Letters 15: 365–377.

Bennour, S. A. & G. A. Nair (1997): Density, biomass and vertical distribution of Aporrectodea caliginosa (Savigny 1826) (Oligochaeta, Lumbricidae) in Benghazi, Libya. – Biol Fertil Soils 24:102–105.

Berg, B., M. P. Davey, A. De Marco, B. Emmett, M. Faituri, S. E. Hobbie, M. B. Johansson, C. Liu, C. McClaugherty, L. Norell, F. A. Rutigliano, L. Vesterdal & A. V. De Santo (2010): Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. – Biogeochemistry 100: 57–73.

Berman, D. I. & A. N. Leirikh (1985): On the Ability of the Earthworm Eisenia nordenskioldi (Eisen) (Lumbricidae, Oligochaeta) to Tolerate Negative Temperatures. – Doklady AN SSSR 285: 1258–1261.

Berman, D. I., E. N. Meshcheryakova, A. V. Alfimov & A. N. Leirikh (2002): Distribution of the Earthworm Dendrobaena octaedra (Lumbricidae: Oligochaeta) in the North of the Holarctic is Limited by Its Insufficient Freeze Tolerance. – Zoologicheskii Zhurnal 81: 1210–1221.

Berman, D. I., A. V. Alfimov, Z. A. Zhigulskaya & A. N. Leirikh (2010): Overwintering and Cold-Hardiness of Ants in the Northeast of Asia. – Pensoft, Sofia–Moscow.

Berman, D. I. & E. N. Meshcheryakova (2013): Ranges and cold hardiness of two earthworm subspecies (Eisenia nordenskioldi, Lumbricidae, Oligochaeta). – Biology Bulletin 40: 719–727.

Berman, D. I., N. A. Bulakhova & E. N. Meshcheryakova (2016): Cold-Hardiness and the Distribution Range of the Earthworm Eisenia sibirica (Oligochaeta, Lumbricidae). – Sibirskii Ekologicheskii Zhurnal 1: 56–64.

Bernard, L., L. Chapuis-Lardy, T. Razafimbelo, M. Razafindrakoto, A. L. Pablo, E. Legname, J. Poulain, T. Brüls, M. O. Donohue, A. Brauman, J. L. Chotte & E. Blanchart (2012): Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. – Isme Journal 6: 213–222.

Berry, E. & D. Jordan (2001): Temperature and soil moisture content effects on the growth of Lumbricus terrestris (Oligochaeta: Lumbricidae) under laboratory conditions. – Soil Biology & Biochemistry 33: 133–136.

Bessolitsyna, E. P. (2012): Ecological and geographic distribution patterns of earthworms (Oligochaeta, Lumbricidae) in landscapes of southern middle Siberia. – Russian Journal of Ecology 43: 82–85.

Beylich, A. & U. Graefe (2002): Annelid coenoses of wetlands representing different decomposer communities. – In: Broll, G., W. Merbach & E.-M. Pfeiffer (eds): Wetlands in Central Europe. – Springer, Berlin, Germany: 1–10.

Black, H. I. J., M. Hornung, P. M. C. Bruneau, J. E. Gordon, J. J. Hopkins, A. J. Weighell & D. L. I. Williams (2003): Soil biodiversity indicators for agricultural land: Nature conservation perspectives. – In: Francaviglia, R. (ed.): Agricultural Impacts on Soil Erosion and Soil Biodiversity: Developing indicators for analysis policy. – Proceedings from OECD Expert Meeting Rome, Italy: 517–533.

Blakemore, R. J. (2003): Japanese earthworms (Annelida: Oligochaeta): A review and checklist of species. – Organisms, Diversity and Evolution 3: 241–244.

Blakemore, R. J. (2006): A Series of Searchable Texts on Earthworm Biodiversity, Ecology and Systematics from Various Regions of the World. General editors: Masamichi T. Ito, Nobuhiro Kaneko. – CD-ROM publication by Soil Ecology Research Group, Graduate School of Environment & Information Sciences, Yokohama National University 79-7 Tokiwadai, Yokohama 240-8501, Japan.

Blankinship, J. C., P. A. Niklaus & B. A. Hungate (2011): A meta-analysis of responses of soil biota to global change. Oecologia 165: 553–565.

Blouin, M., M. E. Hodson, E. A. Delgado, G. Baker, L. Brussard, K. R. Butt, J. Dai, L. Dendooven, G. Peres, J. E. Tondoh, D. Cluzeau & J. J. Brun (2013): A review of earthworm impact on soil function and ecosystem services. – European Journal of Soil Science 64: 161–182.

Bohlen, P. J., S. Scheu, C. M. Hale, M. A. McLean, S. Migge, P. M. Groffman & D. Parkinson (2004): Non-Native Invasive Earthworms as Agents of Change in Northern Temperate Forests. – Frontiers in Ecology and the Environment 2: 427–435.

Booth, L., V. Heppelthwaite & A. Mcglinchy (2000): The effect of environmental parameters on growth, cholinesterase activity and glutathione S-transferase activity in the earthworm (Apporectodea caliginosa). – Biomarkers 5: 46–55.

Boström, U. & A. Lofs-Holmin (1996): Annual population dynamics of earthworms and cocoon production by Aporrectodea caliginosa in a meadow fescueley. – Pedobiologia 40: 32–42.

Bouché, M. B. (1972): Lombriciens de France. Écologie et systématique. – Institut Natational de la Recherche Agronomique, Paris: 668 pp.

Briones, M. J. I., N. J. Ostle, N. Mcnamara & J. Poskitt (2009): Functional shifts of grassland soil communities in response to soil warming. – Soil Biology and Biochemistry 41: 315–322.

Briones, M. J. I. & O. Schmidt (2017): Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. – Global Change Biology 23: 4396–4419.

Buck, N. & A. S. Abe (1990): Atividade sazonal do minhocoçu Andiorrhinus samuelensis na região de Porto Velho, Rondônia (Oligochaeta, Glossoscolecidae). – Ciência e Cultura 42: 835–838.

Bullinger-Weber, G., C. Guenat, C. Salomé, J. Gobat. & R. C. Le Bayon (2012): Impact of flood deposits on earthworm communities in alder forests from a subalpine floodplain (Kandersteg, Switzerland). – European Journal of Soil Biology 49: 5–11.

Burke, I., C. Yonker, W. Parton, C. Cole, K. Flach & D. Schimel (1989): Texture, Climate, and Cultivation Effects on Soil Organic Matter Content in U.S. Grassland Soils. – Soil Science Society of America Journal 53: 800–805.

Byers, J. E., K. Cuddington, C. G. Jones, T. S. Talley, A. Hastings, J. G. Lambrinos, J. A. Crooks & W. G. Wilson (2006): Using ecosystem engineers to restore ecological systems. – Trend in Ecology and Evolution 21: 493–500.

Byzova, J. B. (2007): Respiration of Soil Invertebrates. – KMK Publishing, House, Moscow: 328 pp. (in Russian).

Caballero, M. E. S. (1979): Influência dos fatores hígricos sobre a biomassa de Pheretima hawayana e Pontoscolex corethrurus (Annelida, Oligochaeta). – Zoo Intertrópica 2: 1–11.

Calderon, S., M. Holmstrup, P. Westh & J. Overgaard (2009): Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: cryoprotection and fuel for metabolism. – Journal of Experimental Biology 212: 859–866.

Cameron, E. K., I. S. Martins, P. Lavelle, J. Mathieu, L. Tedersoo, F. Gottschall, C. A. Guerra, J. Hines, G. Patoine, J. Siebert, M. Winter, S. Cesarz, M. Delgado-Baquerizo, O. Ferlian, N. Fierer, H. Kreft, T. E. Lovejoy, L. Montanarella, A. Orgiazzi, H. M. Pereira, H. R. P. Phillips, J. Settele, D. H. Wall & N. Eisenhauer (2018): Global gaps in soil biodiversity data. – Nature Ecology and Evolution 2: 1042–1043.

Cameron, E. K., I. S. Martins, P. Lavelle, J. Mathieu, J. Tedersoo, M. Bahram, F. Gottschall, C. A. Guerra, J. Hines, G. Patoine, J. Siebert, M. Winter, S. Cesarz, O. Ferlian, H. Kreft, T. E. Lovejoy, L. Montanarella, A. Orgiazzi, H. M. Pereira, H. R. P. Phillips, J. Settele, D. H. Wall & N. Eisenhauer (2019): Global mismatches in aboveground and belowground biodiversity. – Conservation Biology [https://doi.org/10.1111/cobi.13311].

Carley, W. (1978): Water economy of the earthworm Lumbricus terrestris L.: Coping with the terrestrial environment. – Journal of Experimental Zoology 205: 71–78.

Carroll, C., L. Merton & P. Burger (2000): Impact of vegetative cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines. – Australian Journal of Soil Research 38: 313–327.

Chen, I-C., J. K. Hill, R. Ohlemüller, D.B. Roy & C. D. Thomas (2011): Rapid Range Shifts of Species Associated with High Levels of Climate Warming. – Science 333: 1024.

Chuang, S. C., W. S. Lai & J. H. Chen (2006): Influence of ultraviolet radiation on selected physiological responses of earthworms. – The Journal of Experimental Biology 209: 4304–4312.

Cock, M. J. W., J. C. Biesmeijer, R. J. C. Cannon, P. J. Gerard, D. Gillespie, J. J. Jiménez, P. Lavelle, S. K. Raina (2013): The implications of climate change for positive contributions of invertebrates to world agriculture. – CAB Reviews 8: 1–48.

Coleman, D. C., Jr. D. A. Crossley & P. F. Hendrix (2004): Fundamentals of Soil Ecology. – Academic Press, London.

Coyle, D. R., U. J. Nagendra, M. K. Taylor, J. H. Campbell, C. E. Cunard, A. H. Joslin, A. Mundepi, C. A. Phillips & Jr. M. A. Callaham (2017): Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. – Soil Biology and Biochemistry 110: 116–133.

Csuzdi, C. (2012): Earthworm species, a searchable database. – Opuscula Zoologica 43: 97–99.

Curry, J. P. (2004): Factors affecting the abundance of earthworms in soils. – In: Edwards, C. A. (ed): Earthworm Ecology, 2nd edn. – CRC Press, Boca Raton, FL: 91–113.

Curry, J. & O. Schmidt (2007): The feeding ecology of earthworms – A review. – Pedobiologia 50: 463–477.

Dai, A. (2013): Increasing drought under global warming in observations and models. – Nature Climate Change 3: 52–58.

Daniel, O., L. Kohli & M. Bieri (1996): Weight gain and weight loss of the earthworm Lumbricus terrestris L. at different temperatures and body weights. – Soil Biology & Biochemistry 28: 1235–1240.

Daugbjerg, P. (1988): Temperature and moisture preferences of three earthworm species (Oligochaeta, Lumbricidae). –Pedobiologia 32: 57– 64.

de Boer, T. E., D. Roelofs, R. Vooijs, M. Holmstrup & M. J. B. Amorim (2017): Population- specific transcriptional differences associated with freeze tolerance in a terrestrial worm. – Ecology and Evolution 8: 3774–3786.

de Vries, F. T., M. E. Liiri, L. Bjørnlund, H. M. Setälä, S. Christensen & R. D. Bardgett (2012): Legacy effects of drought on plant growth and the soil food web. – Oecologia 170: 821.

Diehl, W. J. & D. L. Williams (1992): Interactive effects of soil moisture and food on growth and aerobic metabolism in Eisenia fetida (oligochaeta). – Comparative Biochemistry and Physiology Part A: Physiology 102: 179–184.

Domínguez, J. & C. A. Edwards (1997): Effects of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. – Soil Biology and Biochemistry 29: 743–746.

Doube, B. & L. Auhl (1998): Over-summering of cocoons of the earthworm Microscolex dubius (Megascolicidae) in a hot dry Mediterranean environment. – Pedobiologia 42: 71–77.

Drumond, M. A., L. Q. Guimarães, H. R. El Bizri, L. C. Giovanetti, D. G. Sepúlveda & R. P. Martins (2013): Life history, distribution and abundance of the giant earthworm Rhinodrilus alatus (Righi 1971): conservation and management implications. – Brazilian Journal of Biology 73: 699–708.

Drumond M. A., A. Q. Guimarães & R. H. P. Silva (2015): The role of local knowledge and traditional extraction practices in the management of giant earthworms in Brazil. – PLoS One 10(4): e0123913.

Edwards, C. A. & P. J. Bohlen (1996): Biology and ecology of earthworm, 3rd ed. – Chapman and Hall, London: 426 pp.

Eggleton, P., K. Inward, J. Smith, D. T. Jones & M. Sherlock (2009): A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. – Soil Biology & Biochemistry 41: 1857–1865.

Eisenhauer, N., A. Milcu, A. C. W. Sabais, H. Bessler, A. Weigelt, C. Engels & S. Scheu (2009): Plant community impacts on the structure of earthworm communities depend on season and change with time. – Soil Biology and Biochemistry 41: 2430–2443.

Eisenhauer, N. (2010): The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. – Pedobiologia 53: 343–352.

Eisenhauer, N., N. A. Fisichelli, L. E. Frelich & P. B. Reich (2012): Interactive effects of global warming and ‘global worming’ on the initial establishment of native and exotic herbaceous plant species. – Oikos 121: 1121–1133.

Eisenhauer, N., T. Dobies, S. Cesarz, S. E. Hobbie, R. J. Meyer, K. Worm & P. B. Reich (2013): Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a longterm grassland experiment. – Proceedings of the National Academy of Sciences of the United States of America 110: 6889–6894.

Eisenhauer, N., A. Stefanski, N. A. Fisichelli, K. Rice, R. Rich & P. B. Reich (2014): Warming shifts ‘worming’: effects of experimental warming on invasive earthworms in northern North America. – Scientific Reports 4: 6890.

Eisenhauer, N., P. M. Antunes, A. E. Bennett, K. Birkhofer, A. Bissett, M. A. Bowker, T. Caruso, B. Chen, D. C. Coleman, W. de Boer, P. de Ruiter, T. H. DeLuca, F. Frati, B. S. Griffiths, M. M. Hart, S. Hättenschwiler, J. Haimi, M. Heethoff, N. Kaneko, L. C. Kelly, H. P. Leinaas, Z. Lindo, C. Macdonald, M. C. Rillig, L. Ruess, S. Scheu, O. Schmidt, T. R. Seastedt, N. M. van Straalen, A. V. Tiunov, M. Zimmer & J. R. Powell (2017): Priorities for research in soil ecology. – Pedobiologia 63: 1–7.

Eisenhauer, N., A. Bonn & C. A. Guerra (2019): Recognizing the quiet extinction of invertebrates. – Nature Communications 10, Article number 50 [https://doi.org/10.1038/s41467-018-07916-1].

Emets, V. M. (2018): Long-term Dynamics of population parameters of the Aporrectodea caliginosa Earthworm in an Anually flooded alder forests in the Voronzeh Nature reserve. – Russian Journal of Ecology 49: 349–355.

Eriksen-Hamel, N. S. & J. K. Whalen (2006): Growth rates of Aporrectodea caliginosa (Oligochaetae: Lumbricidae) as influenced by soil temperature and moisture in disturbed and undisturbed soil columns. – Pedobiologia 50: 207–215.

Ernst, G., D. Felten, M. Vohland & C. Emmerling (2009): Impact of ecologically different earthworm species on soil water characteristics. – European Journal of Soil Biology 45: 207–213.

Fernández, R., A. Almodóvar, M. Novo, M. Gutiérrez & D. J. Díaz Cosín (2011): A vagrant clone in a peregrine species: phylogeography, high clonal diversity and geographic distribution in Aporrectodea trapezoides (Dugès, 1828). – Soil Biology and Biochemistry 43: 2085–2093.

Fisichelli, N. A., L. E. Frelich, P. B. Reich & N. Eisenhauer (2013): Linking direct and indirect pathways mediating earthworms, deer, and understory composition in Great Lakes forests. – Biological Invasions 15: 1057–1066.

Fournier, B., E. Samaritani, J. Shrestha, E. A. D. Mitchell & R. C. Le Bayon (2012): Patterns of earthworm communities and species traits in relation to the perturbation gradient of a restored floodplain. – Applied Soil Ecology 59: 87–95.

Fragoso, C., P. Lavelle, E. Blanchart, B. K. Senapati, J. J. Jiménez, M. A. Martínez, T. Decaëns & J. Tondoh (1999): Earthworm communities of tropical agroecosystems: Origin, structure and influence of management practices. – In: Lavelle, P. & L. Brussaard, P. F. Hendrix (eds): Earthworm management in tropical agroecosystems. – CAB International, Wallingford: 27–55.

Franklin, J., J. M. Serra-Diaz, A. D. Syphard & H. M. Regan (2016): Global change and terrestrial plant community dynamics. – Proceedings of the National Academy of Sciences, 113: 3725–3734.

Friis, K., C. Damgaard & M. Holmstrup (2004): Sublethal soil copper concentrations increase mortality in the earthworm Aporrectodea caliginosa during drought. – Ecotoxicology and Environmental Safety 57: 65–73.

Fründ, H. C., U. Graefe & S. Tischer (2011): Earthworms as Bioindicators of Soil Quality. – In: Karaca, A. (ed.): Biology of Earthworms. – Soil Biology 24: 261–278.

Garssen, A. G., F. T. A. Verhoeven & M. B. Soons (2014): Effects of climate-induced increases in summer drought on riparian plant species: a meta-analysis. – Freshwater Biology 59:1052–1063.

Gates, G. E. (1972): Contributions to North American earthworms, Annelida, Oligochaeta. No. 3. Toward a revision of the earthworm family Lumbricidae. IV. The trapezoides species group. – Bulletin (Tall Timbers Research Station) 12: 1–146.

Gerard, B. M. (1967): Factors affecting earthworms in pastures. – Journal of Animal Ecology 36: 235–252.

Gerisch, M., F. Dziock, A. Schanowski, C. Ilg & K. Henle (2012): Community resilience following extreme disturbances: The response of ground beetles to a severe summer flood in a central European lowland stream. – River Research and Applications 28: 81–92.

Gilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchrist & R. D. Holt (2010): A framework for community interactions under climate change. – Trends Ecology & Evolution 25:325–31.

González-Alcaraz, M. N. & C. A. M. van Gestel (2016): Metal/metalloid (As, Cd and Zn) bioaccumulation in the earthworm Eisenia andrei under different scenarios of climate change. – Environmental Pollution 215: 178–186.

Görres, J. H., S. T. Connolly, C. H. Chang, N. R. Carpenter, E. L. Keller, M. Nouri-Aiin & J. J. Schall (2018): Winter hatching in New England populations of invasive pheretimoid earthworms Amynthas agrestis and Amynthas tokioensis: a limit on population growth, or aid in peripheral expansion? – Biological Invasions 20:1651–1655.

Grant, W. C. (1955): Studies on water relationships in earthworms. – Ecology 36: 400–407.

Greiner, H. G., A. M. T. Stonehouse & S. D. Tiegs (2011): Cold Tolerance among Composting Earthworm Species to Evaluate Invasion Potential. – The American Midland Naturalist 166: 349–357.

Hackenberger, D. K., N. Stjepanović, Ž. Lončarić, B. K. & Hackenberger (2018): Acute and subchronic effects of three herbicides on biomarkers and reproduction in earthworm Dendrobaena veneta. – Chemosphere 208: 722–730.

Holmstrup, M., (1995): Polyol accumulation in earthworm cocoons induced by dehydration. – Comparative Biochemistry and Physiology Part A: Physiology 111: 251–255.

Holmstrup, M. & K. E. Zachariassen (1996): Physiology of cold hardiness in earthworms. – Comparative Biochemistry and Physiology a-Physiology 115: 91–101.

Holmstrup, M., J. P. Costanzo & R. E. Lee (1999): Cryoprotective and osmotic responses to cold acclimation and freezing in freeze-tolerant and freeze intolerant earthworms. Journal of Comparative Physiology B. 169: 207–214.

Holmstrup, M. (2001): Sensitivity of life history parameters in the earthworm Aporrectodea caliginosa to small changes in soil water potential. – Soil Biology & Biochemistry 33: 1217–1223.

Holmstrup, M. & V. Loeschcke (2003): Genetic variation in desiccation tolerance of Dendrobaena octaedra cocoons originating from different climatic regions. – Soil Biology & Biochemistry 35: 119–124.

Holmstrup, M. & J. Overgaard (2007): Freeze tolerance in Aporrectodea caliginosa and other earthworms from Finland. – Cryobiology 55: 80–86.

Holmstrup, M., J. Overgaard, A. M. Bindesbøl, C. Pertoldi & M. Bayley (2007): Adaptations to overwintering in the earthworm Dendrobaena octaedra: Genetic differences in glucose loading and freeze tolerance. – Soil Biology and Biochemistry 39: 2640–2650.

Holmstrup, M., S. Slotsbo, P. G. Henriksen & M. Bayley (2016): Earthworms accumulate alanine in response to drought. – Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 199: 8–13.

Hughes, F. M., J. E. Cortês-Figueira & M. A. Drumond (2019): Anticipating the response of the Brazilian giant earthworm (Rhinodrilus alatus) to climate change: implications for its traditional use. – Anais da Academia Brasileira de Ciências 91(1): e20180308.

Huhta,V., T. Persson & H. Setälä (1998): Functional implications of soil fauna diversity in boreal forests. – Applied Soil Ecology 10: 277–288.

Insam, H. & K. H. Domsch, (1988): Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. – Microbial Ecology 15: 177–188.

Intergovernmental Panel on Climate Change (IPCC 2013): Confidence and Likelihood in the IPCC Fifth Assessment Report; IPCC: Geneva, Switzerland.

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES 2018). – The Assessment Report on Land Degradation and Restoration.

Ivask, M., J. Truu, A. Kuu, M. Truu & A. Leito (2007): Earthworm communities of flooded grasslands in Matsalu, Estonia. – European Journal of Soil Biology 43: 71–76.

Jiménez, J. J., A. G. Moreno, T. Decaëns, P. Lavelle, M. J. Fisher & R. J. Thomas (1998): Earthworm communities in native savannas and man-made pastures of the Eastern Plains of Colombia. – Biology and Fertility of Soils 28: 101–110.

Jiménez, J. J., G. G. Brown, T. Decäens, A. Feijoo & P. Lavelle (2000): Differences in the timing of diapause and patterns of aestivation in tropical earthworms. – Pedobiologia 44: 677–694.

Jiménez J. J. & T. Decaëns (2004): The impact of soil organisms on soil functioning under neotropical pastures: a case study of a tropical anecic earthworm species. – Agriculture, Ecosystems and Environment 103: 329–342.

Johnston A. S. A., M. Holmstrup, M. E. Hodson, P. Thorbek, T. Alvarez & R. M. Sibly (2014): Earthworm distribution and abundance predicted by a process-based model. – Applied Soil Ecology 84: 112–123.

Johnston, A. S. A., R. M. Sibly & P. Thorbek (2018): Forecasting tillage and soil warming effects on earthworm populations. – Journal of Applied Ecology 55: 1498–1509.

Johnston, M. R. & B. M. Herrick, (2019): Cocoon Heat Tolerance of Pheretimoid Earthworms Amynthas tokioensis and Amynthas agrestis. – The American Midland Naturalist 181: 299–309.

Jones, C. G., J. H. Lawton & M. Shachak (1994): Organisms as ecosystem engineers. – Oikos 69: 373–386.

Jouquet, P., E. Blancart & Y. Capowiez (2014): Utilization of earthworms and termites for the restoration ecosystem functioning. – Appiled Soil Ecology 73: 34–40.

Keplin, B. & G. Broll (2002): Earthworm coenoses in wet grassland of Northwest-Germany. Effects of restoration management on a Histosol and a Gleysol. – In: Broll, G., W. Merbach & E-M. Pfeiffer (eds.): Wetlands in Central Europe. Soil organisms, soil ecological processes, and trade gas emissions. – Springer-Verlag, Berlin: 11–34.

Klok, C., M. Zorn, J. E. Koolhaas, H. J. P. Eijsackers & C. A. M. van Gestel (2006a): Does reproductive plasticity in Lumbricus rubellus improve the recovery of populations in frequently inundated river floodplains? – Soil Biology and Biochemistry 38: 611–618.

Klok C, A. van der Hout & J. Bodt (2006b): Population growth and development of Lumbricus rubellus in a polluted field soil, consequences for the Godwit (Limosa limosa). – Environmental Toxicology and Chemistry 25: 213–219.

Kretzschmar, A. & C. Bruchou (1991): Weight response to the soil water potential of the earthworm Aporrectodea longa. – Biology and Fertility of Soils 12: 209–212.

Lavelle, P. (1971): Étude préliminaire de la nutrition d’um ver de terre Africain Millsonia anomala (Acanthodrilidae, Oligochètes). – In: d’Aguilar, J., C. A. Henriot, A. Bessard, M. B. Bouché & M. Pussard (eds): Organismes du sol et production primaire. – INRA, Paris: 133–145.

Lavelle, P. (1983): The soil fauna of tropical savannas. II. The earthworms. – In: Bourliere, F. (ed.): Ecosystems of the world, vol. 13: Tropical savannas. – Chapman & Hall, London: 449–466.

Lavelle, P. (1987): Earthworm activities and the soil system. –Biology and Fertility of Soils 6: 237–251.

Lavelle, P., I. Barois, C. Cruz, A. Hernandez & A. Pineda, P. Rangel (1987): Adaptative strategies of Pontoscolex corethrurus (Glossoscolecidæ, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. – Biology and Fertility of Soils 5: 188–194.

Lavelle, P. & A. V. Spain (2001): Soil Ecology. – Kluwer Academic Publ., Dordrecht.

Leadley, P., H. M. Pereira, R. Alkemade, J. F. Fernandez‐Manjarres, V. Proenca & J. P. W. Scharlemann (2010): Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services. – In: Secretariat of the Convention on Biological Diversity (ed. Diversity SotCoB). – Published by the Secretariat of the Convention on Biological Diversity, Montreal, Technical Series no. 50: 1–132.

Lee, K. E. (1985): Earthworm their ecology and relationship with soils and land use. – Academic Press, Sydney.

Lima, M. P. R., D. N. Cardoso, A. M. V. M. Soares & S. Loureiro (2011): Combined effects of soil moisture and carbaryl to earthworms and plants: Simulation of flood and drought scenarios. – Environmental Pollution 159: 1844–1851.

Lima, M. P. R., D. N. Cardoso, A. M. V. M. Soares & S. Loureiro (2015): Carbaryl toxicity prediction to soil organisms under high and low temperature regimes. – Ecotoxicology and Environmental Safety 114: 263–272.

Lurgi, M., B. C. López, J. M. Montoya (2012): Novel communities from climate change. – Philosophical Transactions of the Royal Society B 367: 2913–2922.

Maestre, F. T. & N. Eisenhauer (2019): Recommendations for establishing global collaborative networks in soil ecology. – Soil Organisms 91: 73–85.

Marhan, S., J. Auber & C. Poll (2015): Additive effects of earthworms, nitrogen-rich litter and elevated soil temperature on N2O emission and nitrate leaching from an arable soil. – Applied Soil Ecology 86: 55–61.

Mariotte, P., R. Le Bayon, N. Eisenhauer, C. Guenat & A. Buttler (2016): Subordinate plant species moderate drought effects on earthworm communities in grasslands. – Soil Biology and Biochemistry 96: 119–127.

Maxwell, J. T., G. L. Harley & S. M. Robeson (2016): On the declining relationship between tree growth and climate in the Midwest United States: the fading drought signal. – Climatic Change 138: 127–142.

McDaniel, J. P., M. E. Stromberger, K. A. Barbarick & W. Cranshaw (2013): Survival of Aporrectodea caliginosa and its effects on nutrient availability in biosolids amended soil. – Applied Soil Ecology 71: 1–6.

Meshcheryakova, E. N. & D. I. Berman (2014): Tolerance to Negative Temperatures and the Geographic Distribution of Earthworms (Oligochaeta, Lumbricidae, Moniligastridae),” – Zoologicheskii Zhurnal 93: 53–64.

Millenium Ecosystem Assessment (2005): Ecosystems and Human Well-Being: Biodiversity Synthesis (World Resources Institute, Washington, DC). – Island Press, Washington, DC.

Millican, D. S. & W. I. Lutterschmidt (2007): Comparative seasonal observations of soil temperature and moisture and the occurrence of two earthworms inhabiting prairie and deciduous woodland sites. – The Southwestern Naturalist 52: 468–474.

Moreau-Valancogne, P., M. Bertrand, M. Holmstrup & J. Roger-Estrade (2013): Integration of thermal time and hydrotime models to describe the development and growth of temperate earthworms. – Soil Biology and Biochemistry 63: 50–60.

Morón-Ríos, A., M. Á. Rodríguez, L. Pérez-Camacho & S. Rebollo (2010): Effects of seasonal grazing and precipitation regime on the soil macroinvertebrates of a Mediterranean old-field. – European Journal of Soil Biology 46: 91–96.

Nakicenovic, N., J. Alcamo, A. Grubler, K. Riahi, R. A. Roehrl, H. H. Rogner & N. Victor (2000): Special Report on Emissions Scenarios. – Cambridge University Press, Cambridge: 599 pp.

Nearing, M.A., F. F. Pruski & M. R. O’Neal (2004): Expected climate change impacts on soil erosion rates: A review. –Journal of Soil and Water Conservation 59: 43–50.

Nepstad, D. C., P. Moutinho, M. B. Dias‐Filho, E. Davidson, G. Cardinot, D. Markewitz, R. Figueiredo, N. Vianna, J. Chambers, D. Ray, J. B. Guerreiros, P. Lefebvre, L. Sternberg, M. Moreira, L. Barros, F. Y. Ishida, I. Tohlver, E. Belk, K. Kalif & K. Schwalbe (2002): The effects of partial through fall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. – Journal of Geophysical Research 107: D20, 8085.

Nieminen, M., E. Ketoja, J. Mikola, J. Terhivuo, T. Sirén & V. Nuutinen (2011): Local land use effects and regional environmental limits on earthworm communities in Finnish arable landscapes. – Ecological Applications 21: 3162–3177.

Nordström, S. & S. Rundgren (1974): Environmental factors and lumbricid associations in southern Sweden. – Pedobiologia 14: 1–27

Orgiazzi, A., R. D. Bardgett, E. Barrios, V. Behan-Pelletier, M. J. I. Briones, J. L. Chotte, G. B. de Deyn, P. Eggleton, N. Fierer, T. Fraser, K. Hedlund, S. Jeffery, N. C. Johnson, A. Jones, E. Kandeler, N. Kaneko, P. Lavelle, P. Lemanceau, L. Miko, L. Montanarella, F. M. S. Moreira, K. S. Ramirez, S. Scheu, B. K. Singh, J. Six, W. H. van der Putten & D. H. Wall (2016): Global soil biodiversity atlas. – Luxembourg: Union Européenne: 176 pp.

Overgaard, J., S. Slotsbo, M. Holmstrup & M. Bayley (2007): Determining factors for cryoprotectant accumulation in the freeze-tolerant earthworm, Dendrobaena octaedra. – Journal of Experimental Zoology 307A: 578–589.

Overgaard, J., M. Tollarova, K. Hedlund, S. O. Petersen & M. Holmstrup (2009): Seasonal changes in lipid composition and glycogen storage associated with freeze-tolerance of the earthworm, Dendrobaena octaedra. – Journal of Comparative Physiology B 179: 569–577.

Owojori, O. & A. Reinecke (2010): Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressors on the earthworm Aporrectodea caliginosa under field conditions. – Applied Soil Ecology 44: 156–163.

Parmelee, R. W. & D. A. Jr. Crossley (1988): Earthworm production and role in the nitrogen cycle of a no- tillage agroecosystem on the Georgia Piedmont. – Pedobiologia 32: 353–361.

Pelosi, C., B. Pey, M. Hedde, G. Caro, Y. Capowiez, M. Guernion, J. Peigné, D. Piron, M. Bertrand & D. Cluzeau (2014): Reducing tillage in cultivated fields increases earthworm functional diversity. – Applied Soil Ecology 83: 79–87.

Perreault, J. M. & J. K. Whalen (2006): Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture. – Pedobiologia 50: 397–403.

Petersen, C. R., M. Holmstrup, A. Malmendal, M. Bayley & J. Overgaard (2008): Slow desiccation improves dehydration tolerance and accumulation of compatible osmolytes in earthworm cocoons (Dendrobaena octaedra Savigny). – Journal of Experimental Biology 211: 1903–1910.

Phillips, H. R. P., E.K. Cameron, O. Ferlian, M. Türke, M. Winter & N. Eisenhauer (2017): Red list of a black box. – Nature Ecology and Evolution 1: article no 0103 [https://www.doi.org/10.1038/s41559-017-0103].

Phillips, H. R. P., C. A. Guerra, M. L. C. Bartz, M. J. I. Briones, G. Brown, T. W. Crowther, O. Ferlian, K. B. Gongalsky, J. van den Hoogen, J. Krebs, A. Orgiazzi, D. Routh, B. Schwarz, E. M. Bach, J.Bennett, U. Brose, T. Decaëns, B. König-Ries, M. Loreau, J. Mathieu, C. Mulder, W. H. van der Putten, K. S. Ramirez, M. C. Rillig, D. Russell, M. Rutgers, M. P. Thakur, F. T. de Vries, D. H. Wall, D.A. Wardle, M. Arai, F. O. Ayuke, G. H. Baker, R. Beauséjour, J. C. Bedano, K. Birkhofer, E. Blanchart, B. Blossey, T. Bolger, R. L. Bradley, M. A. Callaham, Y. Capowiez, M. E. Caulfield, A. Choi, F. V. Crotty, A. Dávalos, D. J. Diaz Cosin, A. Dominguez, A. Esteban Duhour, N. van Eekeren, C. Emmerling, L. B. Falco, R.Fernández, S.J. Fonte, C. Fragoso, A. L. C. Franco, M. Fugère, A. T. Fusilero, S. Gholami, M. J. Gundale, M. Gutiérrez López, D. K. Hackenberger, L. M. Hernández, T. Hishi, A. R. Holdsworth, M. Holmstrup, K. N. Hopfensperger, E. Huerta Lwanga, V. Huhta, T. T. Hurisso, B. V. Iannone, M. Iordache, M. Joschko, N. Kaneko, R. Kanianska, A. M. Keith, C. A. Kelly, M. L. Kernecker, J. Klaminder, A. W. Koné, Y. Kooch76, S. T. Kukkonen, H. Lalthanzara, D. R. Lamme, I. M. Lebedev, Y. Li, J. B. Jesus Lidon, N. K. Lincoln, S. R. Loss, R. Maricha, R. Matula, J. Hendrik Moos, G. Moreno, A. Morón-Ríos, B. Muys, J. Neirynck, L. Norgrove, M. Novo, V. Nuutinen, V. Nuzzo, M. Rahman, J. Pansu, S. Paudel, G. Pérès, L. Pérez-Camacho, R. Piñeiro, J.-F. Ponge, M. Imtiaz Rashid, S. Rebollo, J. Rodeiro-Iglesias, M. Á. Rodríguez, A. M. Roth, G. X. Rousseau, A. Rozen, E. Sayad, L. van Schaik, B. C. Scharenbroch, M. Schirrmann, O. Schmidt, B. Schröder, J. Seeber, M. P. Shashkov, J. Singh, S. M. Smith, M. Steinwandter, J. A. Talavera, D. Trigo, J. Tsukamoto, A. W. de Valença, S. J. Vanek, I. Virto, A. A. Wackett, M. W. Warren, N. H. Wehr, J. K. Whalen, M. B. Wironen, V. Wolters, I. V. Zenkova, W. Zhang, E. K. Cameron & N. Eisenhauer (2019): Global distribution of earthworm diversity. – Science 366: 480–485 [https://www.doi.org/10.1126/science.aax4851].

Piearce, T.G. & B. Piearce (1979): Responses of Lumbricidae to Saline Inundation. – Journal of Applied Ecology 16: 461–473.

Pizl, V. (1999): Earthworm communities in hardwood floodplain forests of the Morava and Dyje rivers as influenced by different inundation regimes. – Ekológia Bratislava 18/Supplement: 197–204.

Plum, N. (2005): Terrestrial invertebrates in flooded grassland: a literature review. – Wetlands 25: 721–737.

Plum, N. M. & J. Filser (2005): Floods and drought: Response of earthworms and potworms (Oligochaeta: Lumbricidae, Enchytraeidae) to hydrological extremes in wet grassland. – Pedobiologia 49: 443–453.

Power, M. E. & L. S. Mills (1995): The keystone cops meet in Hilo. – Trends in Ecology and Evolution 10: 182–184.

Presley, M. L., T. C. McElroy & W. J. Diehl (1996): Soil moisture and temperature interact to affect growth, survivorship, fecundity, and fitness in the earthworm Eisenia fetida. – Comparative Biochemistry and Physiology Part A: Physiology 114(4), 319–326.

Rajkhowa, D. J., P. N. Bhattacharyya, A. K. Sarma & K. Mahanta (2015): Diversity and distribution of earthworms in different soil habitats of Assam, North-East India, an Indo-Burma biodiversity hotspot. – Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 85: 389.

Rasmussen, L. & M. Holmstrup (2002): Geographic variation of freeze-tolerance in the earthworm Dendrobaena octaedra. – Journal of Comparative Physiology B 172: 691–698.

Reich, P. B., J. Oleksyn, J. Modrzynski, P. Mrozinski, S. E. Hobbie, D. M. Eissenstat, J. Chorover, O. A. Chadwick, C. M. Hale & M. G. Tjoelker (2005): Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. – Ecology Letters 8: 811–818 [https://www.doi.org/10.1111/j.1461-0248.2005.00779.x].

Richardson, D. R., B. A. Snyder & P. F. Hendrix (2009): Soil Moisture and Temperature: Tolerances and Optima for a Non-native Earthworm Species, Amynthas agrestis (Oligochaeta: Opisthopora: Megascolecidae). – Southeastern Naturalist 8: 325–334.

Rodríguez, A. R. S., P. W. Hill, D. R. Chadwick & D. L. Jones (2019): Typology of extreme flood event leads to differential impacts on soil functioning. – Soil Biology and Biochemistry 129: 153–168.

Roots, B. I. (1956): The water relations of earthworms. II. Resistance to desiccation and immersion and behavior when submerged and when allowed choice of environment. Journal of Experimental Biology 33: 29–44.

Ruan, H., Y. Li & X. Zou (2005): Soil communities and plant litter decomposition as influenced by forest debris: variation across tropical riparian and upland sites. – Pedobiologia 49: 529–538.

Ruiz-Sinoga, J. D. & A. Romero Diaz (2010): Soil degradation factors along a Mediterranean pluviometric gradient in Southern Spain. – Geomorphology 118: 359–368.

Rundgren, S. (1975): Vertical distribution of lumbricids in southern Sweden. – Oikos 26: 299–306.

Sala, O. E., F. S. Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall: (2000): Global biodiversity scenarios for the year 2100. – Science 287: 1770–1774.

Saroja K. (1964): Oxygen consumption of the worm Octochaetona serrata as a function of size and temperature in aquatic and aerial media. – Comparative Biochemistry and Physiology 12: 47–53.

Satchell, J. E (1967): Lumbricidae. In: Burges, A. & F. Raw (eds): Soil Biology. – Academic Press, London and New York: 259–322.

Sautter, K. D., G. G. Brown, S. W. James, A. Pasini, D. H. Nunes & E. P. Benito (2006): Present knowledge of earthworm biodiversity in the state of Parana, Brazil. – European Journal of Soil Biology 42: 296–300.

Scherr, S. J. & J. A. McNeely (2008): Biodiversity conservation and agricultural sustainability: towards a new paradigm of “ecoagriculture” landscapes. – Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363: 477–494.

Schomburg, A., O. S. Schilling, C. Guenat, M. Schirmer, R. C. Le Bayon & P. Brunner (2018): Topsoil structure stability in a restored floodplain: Impacts of fluctuating water levels, soil parameters and ecosystem engineers. – Science of the Total Environment 639: 1610–1622.

Schütz, K., P. Nagel, A. Dill & S. Scheu (2008): Structure and functioning of earthworm communities in woodland flooding systems used for drinking water production. – Applied Soil Ecology 39: 342– 351.

Schuur, E. A. G. & P. A. Matson(2001): Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. – Oecologia 128:

–442.

Shekhovtsov, S. V., D. I. Berman & S. E. Peltek (2015): Phylogeography of the Earthworm Eisenia nordenskioldi nordenskioldi (Lumbricidae, Oligochaeta) in the Northeast of Eurasia. – Doklady Biological Sciences 461: 118–121.

Siebert, J., M. P. Thakur, T. Reitz, M. Schädler, E. Schulz, R. Yin, A.Weigelt & N. Eisenhauer (2019a): Extensive grassland-use sustains high levels of soil biological activity, but does not alleviate detrimental climate change effects. – Advances in Ecological Research 60: 25–58.

Siebert, J., N. Eisenhauer, C. Poll, S. Marhan, M. Bonkowski, J. Hines, R. Koller, L. Ruess & M. P. Thakur (2019b): Earthworms modulate the effects of climate warming on the taxon richness of soil meso- and macrofauna in an agricultural system. – Agriculture, Ecosystems & Environment 278: 72– 80.

Singh, S., J. Singh & A. P. Vig (2016): Effect of abiotic factors on the distribution of earthworms in different land use patterns. – The Journal of Basic & Applied Zoology 74: 41–50.

Skubała P. (2013): Biodiversity and ecosystem services in soil under threat. – Journal of Pollution Effects & Contntrol 1: e101.

Staley, J. T., S. R. Mortimer, M. D. Morecroft, V. K. Brown & G. J. Masters (2008): Drought impacts on above–belowground interactions: do effects differ between annual and perennial host species? – Basic and Applied Ecology 9: 673–681.

Sutherland W. J., S. Armstrong-Brown, P. R. Armsworth, T. Brereton, J. Brickland, C. D. Campbell, D. E. Chamberlain, A. I. Cooke, N. K. Dulvy, N. R. Dusic, M. Fitton, R. P. Freckleton, H. C. J. Godfray, N. Grout, H. J. Harvey,

C. Hedley, J. J. Hopkins, N. B. Kift, J. Kirby, W. E. Kunin, D. W. Macdonald, B. Marker, M. Naura, A. R. Neale,

T. Oliver, D. Osborn, A. S. Pullin, M. E. A. Shardlow, D. A. Showler, P. L. Smith, R. J. Smithers, J.-L. Soland, J. Spencer, C. J. Spray, C. D. Thomas, J. Thompson, S. E. Webb, D. W. Yalden & A. R. Watkinson (2006): The identification of 100 ecological questions of high policy relevance in the UK. – Journal of Applied Ecology 43: 617–628.

Thakur, M. P., P. B. Reich, S. E. Hobbie, A. Stefanski, R. Rich, K. E. Rice, W. C. Eddy & N. Eisenhauer (2018): Reduced feeding activity of soil detritivores under warmer and drier conditions. – Nature Climate Change 8: 75–78.

Thomason, J. E., M. C. Savin, K. Brye & D. T. Johnson (2017): Native earthworm population dominance after seven years of tillage, burning, and residue level management in a wheat-soybean, double-crop system. – Applied Soil Ecology 120: 211–218.

Thonon, I. & C. Klok (2007): Impact of a changed inundation regime caused by climate change and floodplain rehabilitation on population viability of earthworms in a lower River Rhine floodplain. – Science of the Total Environment 372: 585–594.

Tiunov, A. V., C. M. Hale, A. R. Holdsworth & T. S. Vsevolodova-Perel (2006): Invasion patterns of Lumbricidae into the previously earthworm-free areas of northeastern Europe and the western Great Lakes region of North America. – Biological Invasions 8: 223–1234.

Tockner, K. & J. Stanford (2002): Riverine Flood Plains: Present State and Future Trends. – Environmental Conservation 29. 308–330.

Tondoh, J. E. (2006): Seasonal changes in earthworm diversity and community structure in Central Côte d’Ivoire. – European Journal of Soil Biology 42: 334–340.

Tsai, C. F., H. P. Shen & S. C. Tsai (2000): Native and exotic species of terrestrial earthworms (Oligochaete) in Taiwan with reference to northeast. – Asia Zoological Studies 39: 285–294.

Unger, I. M., A. C. Kennedy & R. M. Muzika (2009): Flooding effects on soil microbial communities. – Applied Soil Ecology 42: 1–8.

Uvarov, A. V., A. V. Tiunov & S. Scheu (2011): Effects of seasonal and diurnal temperature fluctuations on population dynamics of two epigeic earthworm species in forest soil. – Soil Biology and Biochemistry 43: 559–570.

Velki, M. & S. Ečimović (2015): Changes in exposure temperature lead to changes in pesticide toxicity to earthworms: a preliminary study. – Environ Toxicol Pharmacol 40: 774–784.

Veresoglou, S. D., J. M. Halley & M. C. Rillig(2015): Extinction risk of soil biota. – Nature Communications 6: 8862.

Visser, E. J. W. & L. A. C. J. Voesenek (2005): Acclimation to soil flooding‐sensing and signal‐transduction. – Plant and Soil 274: 197–214.

Wall, D. H., N.U. Nielsen & J. Six (2015): Soil biodiversity and human health. – Nature 528: 69–76.

Walsh, C. L. & J. L. Johnson-Maynard (2016): Earthworm distribution and density across a climatic gradient within the Inland Pacific Northwest cereal production region. – Applied Soil Ecology 104: 104–110.

Wardle, D. A. (2002): Communities and ecosystems: linking the aboveground and belowground components. – Princeton, NJ, Princeton University Press.

Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setälä, W. H. van der Putten & D. H. Wall (2004): Ecological linkages between aboveground and belowground biota. – Science 304: 1629–1633.

Wever, L. A., T. J. Lysyk & M. J. Clapperton (2001): The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricidae). – Pedobiologia 45: 121–133.

Williamson, W. M. & D. A. Wardle (2007): The soil microbial community response when plants are subjected to water stress and defoliation disturbance. – Applied Soil Ecology 37: 139–149.

Wright, A. J., A. Ebeling, H. de Kroon, C. Roscher, A. Weigelt, N. Buchmann, T. Buchmann, C. Fischer, N. Hacker, A. Hildebrandt, S. Leimer, L. Mommer, Y. Oelmann, S. Scheu, K. Steinauer, T. Strecker, W. Weisser, W. Wilcke &

N. Eisenhauer (2014). Flooding disturbances increase resource availability and productivity but reduce stability in diverse plant communities. – Nature Communications 6: 6092 [https://www.doi.org/10.1038/ncomms7092].

Wuebbles, D. J. & K. Hayhoe (2004): Climate change projections for the United States Midwest. – Mitigation and Adaptation Strategies for Global Change 9: 335–363.

Zaller, J. G. & J. A. Arnone (1999): Earthworm and soil moisture effects on the productivity and structure of grassland communities. – Soil Biology & Biochemistry 31: 517–523.

Zaller, J. G., M. M. Caldwell, S. D. Flint, C. L. Ballare, A. Scopel & O. E. Sala (2009): Solar UVB and warming affect decomposition and earthworms in a fen ecosystem in Tierra del Fuego, Argentina. – Global Change Biology 15: 2493–2502.

Zhang, Q. L. & P. F. Hendrix (1995): Earthworm (Lumbricus rubellus and Aporrectodea caliginosa) effects on carbon flux in soil. – Soil Science Society of America Journal 59: 816–823.

Zhang, Q., E. J. W. Visser, H. de Kroon & H. Huber (2015): Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara. – Annals of Botany 116: 279–290.

Zorn, M. I., C. A. M. van Gestel & H. Eijsackers (2005): Species-specific earthworm population responses in relation to flooding dynamics in a Dutch floodplain soil. – Pedobiologia 49: 189–198

Zorn, M. I., C. A. M. van Gestela, E. Morriena, M. Wagenaara & H. Eijsackers (2008): Flooding responses of three earthworm species, Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus, in a laboratory-controlled environment. – Soil Biology & Biochemistry 40: 587–593.

Published
2019-12-01
How to Cite
Singh, J., Schädler, M., Demetrio, W., Brown, G. G., & Eisenhauer, N. (2019). Climate change effects on earthworms - a review. SOIL ORGANISMS, 91(3), 114–138. https://doi.org/10.25674/so91iss3pp114
Section
ARTICLES