sOilFauna - a global synthesis effort on the drivers of soil macrofauna communities and functioning

WORKSHOP REPORT

Authors

  • Jérôme Mathieu Sorbonne Université
  • Ana C. Antunes German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; University of Jena
  • Sébastien Barot Sorbonne Université
  • Ana E. Bonato Asato German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig University
  • Marie L. C. Bartz Centre for Organic and Regenerative Agriculture; University of Coimbra
  • George G. Brown Embrapa Forestry
  • Irene Calderon-Sanou Université Grenoble Alpes
  • Thibaud Decaëns University of Montpellier
  • Steven J. Fonte Colorado State University
  • Pierre Ganault German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig University
  • Benoit Gauzens German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; University of Jena
  • Konstantin B. Gongalsky Russian Academy of Sciences
  • Carlos A. Guerra German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig University
  • Tomislav Hengl OpenGeoHub Foundation; Wageningen University
  • Patrick Lavelle Sorbonne Université
  • Raphael Marichal CIRAD
  • Henry Mehring German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig University
  • Clara P. Peña-Venegas Instituto Amazónico de Investigaciones Científicas SINCHI
  • Daniel Castro Instituto Amazónico de Investigaciones Científicas SINCHI
  • Anton Potapov University of Goettingen
  • Elisa Thébault Sorbonne Université
  • Wilfried Thuiller Université Grenoble Alpes
  • Martijn Witjes OpenGeoHub Foundation; Wageningen University
  • Chi Zhang South China Agricultural University
  • Nico Eisenhauer German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig University

DOI:

https://doi.org/10.25674/so94iss2id282

Abstract

Understanding global biodiversity change, its drivers, and the ecosystem consequences requires a better appreciation of both the factors that shape soil macrofauna communities and the ecosystem effects of these organisms. The project “sOilFauna” was funded by the synthesis center sDiv (Germany) to address this major gap by forming a community of soil ecologists, identifying the most pressing research questions and hypotheses, as well as conducting a series of workshops to foster the global synthesis and hypothesis testing of soil macrofauna. The overarching goal is to analyze the most comprehensive soil macrofauna database - the MACROFAUNA database - which collates abundance data of 17 soil invertebrate groups assessed with a standardized method at 7180 sites around the world, and seeks to foster the collection of future data. In a recent kick-off workshop in May 2022, the first research priorities and collaboration guidelines were determined. Here, we summarize the main outcomes of this workshop and highlight the benefits of creating an open global community of soil ecologists providing standardized soil macrofauna data for future research, evaluation of ecosystem health, and nature protection.

References

Aava, B. (2001): Primary Productivity Can Affect Mammalian Body Size Frequency Distributions. – Oikos 93: 205–212 [https://doi.org/10.1034/j.1600-0706.2001.930204.x].

Albers, D., M. Schaefer & S. Scheu (2006): Incorporation of Plant Carbon into the Soil Animal Food Web of an Arable System. – Ecology 87: 235–245 [ https://doi.org/10.1890/04-1728].

Anderson, J. M. & J. S. I. Ingram (1993): Tropical Soil Biology and Fertility. – A handbook of methods, 1st ed. CAB International, Wallingford, UK.

Arnoldi, J.-F., M. Loreau & B. Haegeman (2019): The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. – Ecology Letters 22: 1557–1567 [https://doi.org/10.1111/ele.13345].

Aviron, S., F. Burel, J. Baudry & N. Schermann (2005): Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. – Agriculture Ecosystems & Environment 108: 205–217.

Baiser, B., D. Gravel, A. R. Cirtwill, J. A. Dunne, A. K. Fahimipour, L. J. Gilarranz, J. A. Grochow, D. Li, N. D. Martinez, A. McGrew et al. (2019): Ecogeographical rules and the macroecology of food webs. – Global Ecology and Biogeography 28: 1204–1218 [https://doi.org/10.1111/geb.12925].

Bardgett, R. D. & W. H. van der Putten (2014): Belowground biodiversity and ecosystem functioning. Nature 515: 505–511 [https://doi.org/10.1038/nature13855].

Barnes, A. D., M. Jochum, S. Mumme, N. F. Haneda, A. Farajallah, T. H. Widarto & U. Brose (2014): Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications 5: 5351 [https://doi.org/10.1038/ncomms6351] https://www.nature.com/articles/ncomms6351#supplementary-information.

Barnes, A. D., C. Scherber, U. Brose, E. T. Borer, A. Ebeling, B. Gauzens, D. P. Giling, J. Hines, F. Isbell, C. Ristok et al. (2020): Biodiversity enhances the multitrophic control of arthropod herbivory. – Science Advances 6: eabb6603 [https://doi.org/10.1126/sciadv.abb6603].

Bar-On, Y .M., R. Phillips & R. Milo (2018): The biomass distribution on Earth. Proceedings of the National Academy of Sciences 115: 6506–6511 [https://doi.org/10.1073/pnas.1711842115].

Beaumelle, L., F. De Laender & N. Eisenhauer (2020): Biodiversity mediates the effects of stressors but not nutrients on litter decomposition. – ELife 9: e55659 [https://doi.org/10.7554/eLife.55659].

Bergmann, C. (1847). Ueber die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Gottinger Studien 3: 595–708.

Blankinship, J. C., P. A. Niklaus & B. A. Hungate (2011): A meta-analysis of responses of soil biota to global change. – Oecologia 165: 553–565 [https://doi.org/10.1007/s00442-011-1909-0].

Blüthgen, N., C. F. Dormann, D. Prati, V H. Klaus, T. Kleinebecker, N. Hölzel, F. Alt, S. Boch, S. Gockel, A. Hemp et al. (2012): A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. – Basic and Applied Ecology 13: 207–220 [https://doi.org/10.1016/j.baae.2012.04.001].

Bonte, D., L. Baert, L. Lens & J. P. Maelfait (2004): Effects of aerial dispersal, habitat specialisation, and landscape structure on spider distribution across fragmented grey dunes. – Ecography 27: 343–349.

Bradford, M. A., T. H. Jones, R. D. Bardgett, H. I. J. Black, B. Boag, M. Bonkowski, R. Cook, T. Eggers, A. C. Gange, S. J. Grayston et al. (2002): Impact of Soil Faunal Community Composition on Model Grassland Ecosystems. – Science 298: 615–618 [https://doi.org/10.1126/science.107580].

Breiman, L. (2001): Random forests. – Machine Learning 45: 5–32. [http://dx.doi.org/10.1023/A:1010933404324]

Brown, G., E. Da Silva, M. Thomazini, C. Niva, T. Decaëns, L. Cunha, H. Nadolny, W. Demetrio, A. Santos, T. Ferreira et al. (2018): The role of soil fauna in soil health and delivery of ecosystem services. – Managing soil health for sustainable agriculture: 197–241 [https://doi.org/10.19103/AS.2017.0033.11].

Calderón-Sanou, I., L. Zinger, M. Hedde, C. Martinez-Almoyna, A. Saillard, J. Renaud, L. Gielly, N. Khedim, C. Lionnet, M. Ohlmann et al. (2022): Energy and physiological tolerance explain multi-trophic soil diversity in temperate mountains. – Diversity and Distributions: 1–16 [https://doi.org/10.1111/ddi.13529].

Caro, G., T. Decaëns, C. Lecarpentier & J. Mathieu (2013): Are dispersal behaviours of earthworms related to their functional group? – Soil Biology & Biochemistry 58: 181–187 [https://doi.org/http://dx.doi.org/10.1016/j.soilbio.2012.11.019].

Caruso, T., I. Schaefer, F. Monson & A. M., Keith (2019): Oribatid mites show how climate and latitudinal gradients in organic matter can drive large-scale biodiversity patterns of soil communities. – Journal of Biogeography 46: 611–620 [https://doi.org/10.1111/jbi.13501].

Chassain, J., L. Vieublé Gonod, C. Chenu & S. Joimel (2021): Role of different size classes of organisms in cropped soils: What do litterbag experiments tell us? A meta-analysis. – Soil Biology and Biochemistry 162: 108394 [https://doi.org/10.1016/j.soilbio.2021.108394].

de Ruiter, P., A.-M. Neutel & J. Moore (1995): Energetics, patterns of interaction strengths, and stability in real ecosystems. – Science 269: 1257–1260. Science 269: 1257–60 [https://doi.org/10.1126/science.269.5228.1257].

Decaëns, T. (2010): Macroecological patterns in soil communities. – Global Ecology and Biogeography 19: 287–302 [https://doi.org/doi:10.1111/j.1466-8238.2009.00517.x].

Decaëns, T., J. J. Jiménez, C. Gioia, J. Measey & P. Lavelle (2006): The values of soil animals for conservation biology. – European Journal of Soil Biology 42: S23–S38 [https://doi.org/10.1016/j.ejsobi.2006.07.001].

Decaëns, T. &, J. J. Jiménez (2002): Earthworm communities under an agricultural intensification gradient in Colombia. – Plant and Soil 240: 133–143 [https://doi.org/10.1023/A:1015844610604].

de Graaff, M.-A., J. Adkins, P. Kardol & H.L. Throop (2015): A meta-analysis of soil biodiversity impacts on the carbon cycle. – SOIL 1: 257–271 [https://doi.org/10.5194/soil-1-257-2015]

Delgado-Baquerizo, M., A. M. Oliverio, T .E. Brewer, A. Benavent-González, D. J. Eldridge, R. D. Bardgett, F. T .Maestre, B. K. Singh & N. Fierer (2018): A global atlas of the dominant bacteria found in soil. – Science 359: 320–325 [https://doi.org/10.1126/science.aap9516].

Diehl, E., E. Sereda, V. Wolters & K. Birkhofer (2013): Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta-analysis. – Journal of Applied Ecology 50: 262–270 [https://doi.org/10.1111/1365-2664.12032].

Dupont, L., Y. Grésille, B. Richard, T. Decaëns & J. Mathieu (2015): Dispersal constraints and fine-scale spatial genetic structure in two earthworm species. – Biological Journal of the Linnean Society 114: 335–347 [https://doi.org/10.1111/bij.12436].

Dupont, L., M. Torres-Leguizamon, P. Rene-Corail & J. Mathieu (2017): Landscape features impact connectivity between soil populations: a comparative study of gene flow in earthworms. – Molecular Ecology 26: 3128–3140 [https://doi.org/10.1111/mec.14102].

Eisenhauer, N., P. M. Antunes, A. E. Bennett, K. Birkhofer, A. Bissett, M. A. Bowker, T. Caruso, B. Chen, D. C. Coleman, W. Boer et al. (2017): Priorities for research in soil ecology. – Pedobiologia 63: 1–7 [https://doi.org/10.1016/j.pedobi.2017.05.003].

Eisenhauer, N., S. Herrmann, J. Hines, F. Buscot, J. Siebert & M. P. Thakur (2018): The Dark Side of Animal Phenology. – Trends in Ecology & Evolution 33: 898–901) [https://doi.org/doi:10.1016/j.tree.2018.09.010].

Eisenhauer, N., P. B. Reich & F. Isbell (2012): Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. – Ecology 93: 2227–2240 [https://doi.org/10.1890/11-2266.1]

Ettema, C. H. & D. A.Wardle (2002): Spatial soil ecology. – Trends in Ecology & Evolution 17: 177–183.

Fahrig, L., J. Baudry, L. Brotons, F. G. Burel, T. O. Crist, R. J. Fuller, C. Sirami, G. M. Siriwardena & J.-L. Martin (2011): Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. – Ecology Letters 14: 101–112 [https://doi.org/10.1111/j.1461-0248.2010.01559.x].

Fischer, M., O. Bossdorf, S. Gockel, F. Hänsel, A. Hemp, D. Hessenmöller, G. Korte, J. Nieschulze, S. Pfeiffer, D. Prati et al. (2010): Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. – Basic and Applied Ecology 11: 473–485 [https://doi.org/10.1016/j.baae.2010.07.009].

Frouz, J., A. Roubíčková, P. Heděnec & K. Tajovský (2015): Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. – European Journal of Soil Biology 68: 18–24 [https://doi.org/10.1016/j.ejsobi.2015.03.002].

Ganault, P., J. Nahmani, S. Hättenschwiler, L. M. Gillespie, J.-F. David, L. Henneron, E. Iorio, C. Mazzia, B. Muys, A. Pasquet et al. (2021): Relative importance of tree species richness, tree functional type, and microenvironment for soil macrofauna communities in European forests. – Oecologia 196: 455–468 [https://doi.org/10.1007/s00442-021-04931-w].

Gardner, J. L., A. Peters, M.R. Kearney, L. Joseph & R. Heinsohn (2011): Declining body size: a third universal response to warming? – Trends in Ecology & Evolution 26: 285–291 [https://doi.org/10.1016/j.tree.2011.03.005].

Gibb, H., N. J. Sanders, R. R. Dunn, X. Arnan, H. L. Vasconcelos, D. A. Donoso, A. N. Andersen, R. R. Silva, T. R. Bishop, C. Gomez et al. (2018): Habitat disturbance selects against both small and large species across varying climates. – Ecography 41: 1184–1193 [https://doi.org/10.1111/ecog.03244].

Greenop, A., B. A. Woodcock, A. Wilby, S. M. Cook & R. F. Pywell (2018): Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. – Ecology 99: 1771–1782 [https://doi.org/10.1002/ecy.2378].

Guerra, C. A., R. D. Bardgett, L. Caon, T. W. Crowther, M. Delgado-Baquerizo, L. Montanarella, L. M. Navarro, A. Orgiazzi, B. K. Singh, L. Tedersoo et al. (2021a): Tracking, targeting, and conserving soil biodiversity. – Science 371: 239–241 [https://doi.org/10.1126/science.abd7926].

Guerra, C. A., A. Heintz-Buschart, J. Sikorski, A. Chatzinotas, N. Guerrero-Ramírez, S. Cesarz, L. Beaumelle, M. C. Rillig, F. T. Maestre, M. Delgado-Baquerizo et al. (2020): Blind spots in global soil biodiversity and ecosystem function research. – Nature Communications 11: 3870 [https://doi.org/10.1038/s41467-020-17688-2].

Guerra, C. A., D. Wall & N. Eisenhauer (2021b): Unearthing soil ecological observations: see supporting information as supplementary material. – Soil Organisms 93: 79–81 [https://doi.org/10.25674/so93iss2id164].

Guo, C., J. H. C. Cornelissen, B. Tuo, H. Ci & E.-R. Yan (2020): Invertebrate phenology modulates the effect of the leaf economics spectrum on litter decomposition rate across 41 subtropical woody plant species. – Functional Ecology 34: 735–746 [https://doi.org/10.1111/1365-2435.13496].

Haegeman, B., J.-F. Arnoldi, S. Wang, C. de Mazancourt, J. M. Montoya & M. Loreau (2016): Resilience, Invariability, and Ecological Stability across Levels of Organization [https://doi.org/10.1101/085852].

Hatton, I. A., K. S. McCann, J. M. Fryxell, T. J. Davies, M. Smerlak, A. R. E. Sinclair & M. Loreau (2015): The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. – Science 349: aac6284 [https://doi.org/10.1126/science.aac6284].

Heemsbergen, D. A., M. P. Berg, M. Loreau, J. R. van Hal, J. H. Faber & H. A. Verhoef (2004): Biodiversity Effects on Soil Processes Explained by Interspecific Functional Dissimilarity. – Science 306: 1019–1020 [https://doi.org/10.1126/science.1101865].

Huang, W., G. González & X. Zou (2020): Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis. – Applied Soil Ecology 150: 103473 [https://doi.org/10.1016/j.apsoil.2019.103473]

ISO (2011): ISO 23611-5:2011. Soil quality- sampling of soil invertebrates- Part 5. Sampling and extraction of soil macro- invertebrates. International Organization for Standardization.

Jochum, M. & N. Eisenhauer (2022): Out of the dark: Using energy flux to connect above- and belowground communities and ecosystem functioning. – European Journal of Soil Science 73: e13154 [https://doi.org/10.1111/ejss.13154].

Karagkouni, M., S. Sfenthourakis, A. Feldman & S. Meiri (2016): Biogeography of body size in terrestrial isopods (Crustacea: Oniscidea). – Journal of Zoological Systematics and Evolutionary Research 54: 182–188 [https://doi.org/10.1111/jzs.12125].

Kaspari, M. (2001): Taxonomic level, trophic biology and the regulation of local abundance. – Global Ecology and Biogeography 10: 229–244 [https://doi.org/10.1046/j.1466-822X.2001.00214.x].

Kelly, C., S. J. Fonte, A. Shrestha, K. M. Daane, J. P. & Mitchell (2021): Winter cover crops and no-till promote soil macrofauna communities in irrigated, Mediterranean cropland in California, USA. – Applied Soil Ecology 166: 104068 [https://doi.org/10.1016/j.apsoil.2021.104068].

Lang, B. & D. J. Russell (2020) Effects of earthworms on bulk density: A meta-analysis. – European Journal of Soil Science 71: 80–83 [https://doi.org/10.1111/ejss.12846].

Lavelle, P. (1998): Assessing the abundance and role of invertebrate communities in tropical soils: Aims and methods. – Revue de Zoologie Africaine - Journal of African Zoology 102: 275–283.

Lavelle, P., J. Mathieu, A. Spain, G. Brown, C. Fragoso, E. Lapied, A. De Aquino, I. Barois, E. Barrios, M. E. Barros et al. (2022): Soil macroinvertebrate communities: A world-wide assessment. – Global Ecology and Biogeography 31: 1261–1276 [https://doi.org/10.1111/geb.13492].

Lehmann, A., W. Zheng & M.C. Rillig (2017): Soil biota contributions to soil aggregation. – Nature Ecology & Evolution 1: 1828–1835 [https://doi.org/10.1038/s41559-017-0344-y]

Le Provost, G., J. Thiele, C. Westphal, C. Penone, E. Allan, M. Neyret, F. van der Plas, M. Ayasse, R. D. Bardgett, K. Birkhofer et al. (2021): Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. – Nature Communications 12: 3918 [https://doi.org/10.1038/s41467-021-23931-1].

Lefcheck, J. S. (2016): piecewiseSEM: Piecewise structural equation modeling in r for ecology, evolution, and systematics. – Methods in Ecology and Evolution 7: 573–579 [https://doi.org/10.1111/2041-210X.12512].

Lembrechts, J. J., J. Aalto, M. B. Ashcroft, P. De Frenne, M. Kopecký, J. Lenoir, M. Luoto, I. M. D. Maclean, O. Roupsard, E. Fuentes-Lillo et al. (2020). SoilTemp: A global database of near-surface temperature. Global Change – Biology 26: 6616–6629 [https://doi.org/10.1111/gcb.15123].

Maestre, F. T. & N. Eisenhauer (2019): Recommendations for establishing global collaborative networks in soil ecology. – Soil Organisms 91: 73–85 [https://doi.org/10.25674/so91iss3pp73].

Maraun, M., H. Schatz & S. Scheu (2007): Awesome or ordinary? – Global diversity patterns of oribatids Ecography 30: 209–216 [https://doi.org/10.1111/j.0906-7590.2007.04994.x].

Mathieu, J. & J. T. Davies (2014): Glaciation as an historical filter of below-ground biodiversity, Journal of Biogeography. – Journal of Biogeography 41: 1204–1214 [https://doi.org/10.1111/jbi.12284].

Mathieu, J., M. Grimaldi, P. Jouquet, C. Rouland, P. Lavelle, T. Desjardins, J.-P. Rossi (2009): Spatial patterns of grasses influence soil macrofauna biodiversity in Amazonian pastures. – Soil Biology & Biochemistry 71: 586–593 [https://doi.org/10.1016/j.soilbio.2008.12.020].

Mathieu, J., J.-P. Rossi, M. Grimaldi, P. Mora, P. Lavelle, C. Rouland (2004): A multi-scale study of soil macrofauna biodiversity in Amazonian pastures. – Biology and Fertility of Soils 40: 300–305 [https://doi.org/10.1007/s00374-004-0777-8].

May, R. M. (1972): Will a Large Complex System be Stable? Nature 238: 413–414 [https://doi.org/10.1038/238413a0].

Mellard, J. P., P. Audoye & M. Loreau (2019): Seasonal patterns in species diversity across biomes. – Ecology 100: e02627 [https://doi.org/10.1002/ecy.2627].

Mendoza, M. & M. B. Araújo (2019): Climate shapes mammal community trophic structures and humans simplify them. – Nature Communications 10: 5197 [https://doi.org/10.1038/s41467-019-12995-9].

Moi, D. A., R. García-Ríos, Z. Hong, B. V. Daquila & R. P. Mormul (2020): Intermediate Disturbance Hypothesis in Ecology: A Literature Review. – Annales Zoologici Fennici 57: 67–78 [https://doi.org/10.5735/086.057.0108].

Morales-Castilla, I., M. A. Rodriguez & B. A. Hawkins (2012): Deep phylogeny, net primary productivity, and global body size gradient in birds. – Biological Journal of the Linnean Society 106: 880–892 [https://doi.org/10.1111/j.1095-8312.2012.01917.x].

Norberg, A., N. Abrego, F .G. Blanchet, F. R. Adler, B. J. Anderson, J. Anttila, M. B. Araújo, T. Dallas, D. Dunson, J. Elith et al. (2019): A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. – Ecological Monographs 89: e01370 [https://doi.org/10.1002/ecm.1370].

Ochoa-Hueso, R., A. C. Risch, S. L. Collins, N. Eisenhauer & W. H. van der Putten (2020): Ecosystem and biogeochemical coupling in terrestrial ecosystems under global change: A roadmap for synthesis and call for data: CALL FOR COLLABORATION. Soil Organisms 92: 8–12 [https://doi.org/10.25674/so92iss1pp8].

Odum, E. P. (1969): The strategy of Ecosystem Development. – Science 164: 262–270.

Olayemi, O. P., J. P. Schneekloth, M. D. Wallenstein, P. Trivedi, F. J. Calderón, J. Corwin & S. J. Fonte (2022): Soil macrofauna and microbial communities respond in similar ways to management drivers in an irrigated maize system of Colorado (USA). – Applied Soil Ecology 178: 104562 [https://doi.org/10.1016/j.apsoil.2022.104562].

Phillips, H., L. Beaumelle, K. Tyndall, V. Burton, E. Cameron, N. Eisenhauer, O. Ferlian (2019a): The effects of global change on soil faunal communities: a meta-analytic approach. – Research Ideas and Outcomes 5: e36427 [https://doi.org/10.3897/rio.5.e36427].

Phillips, H. R. P., C. A. Guerra, M. L. C. Bartz, M. J. I. Briones, G. Brown, T. W. Crowther, O. Ferlian, K. B. Gongalsky, J. van den Hoogen, J. Krebs et al. (2019b): Global distribution of earthworm diversity. – Science 366: 480–485 [https://doi.org/10.1126/science.aax4851].

Phillips, H. R. P., E. M. Bach, M. L. C. Bartz, J. M. Bennett, R. Beugnon, M. J. I. Briones, G. G. Brown, O. Ferlian, K. B. Gongalsky, C. A. Guerra et al. (2021): Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. – Scientific Data 8: 1–12 [https://doi.org/10.1038/s41597-021-00912-z].

Pollierer, M. M., R. Langel, C. Körner, M. Maraun & S. Scheu (2007): The underestimated importance of belowground carbon input for forest soil animal food webs. – Ecology Letters 10: 729–736 [https://doi.org/10.1111/j.1461-0248.2007.01064.x].

Potapov, A. M., F. Beaulieu, K. Birkhofer, S. L. Bluhm, M. I. Degtyarev, M. Devetter, A. A. Goncharov, K. B. Gongalsky, B. Klarner, D. I. Korobushkin et al. (2022a). Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. – Biological Reviews 97: 1057–1117 [https://doi.org/10.1111/brv.12832].

Potapov, A. M. (2022b): Multifunctionality of belowground food webs: resource, size and spatial energy channels. – Biological Reviews 97: 1691–1711 [https://doi.org/10.1111/brv.12857].

Potapov, A. M., B. Klarner, D. Sandmann, R. Widyastuti & S. Scheu (2019): Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. – Journal of Animal Ecology 88: 1845–1859 [https://doi.org/10.1111/1365-2656.13027].

Potapov, A. M., O. L. Rozanova, E. E. Semenina, V. D. Leonov, O. I. Belyakova, V. Yu Bogatyreva ,M. I. Degtyarev, A. S. Esaulov, A. Y. Korotkevich et al. (2021): Size compartmentalization of energy channeling in terrestrial belowground food webs. – Ecology 102: e03421 [https://doi.org/10.1002/ecy.3421].

Potapov, A. M., X. Sun, A. D. Barnes, M. J. Briones, G. G. Brown, E. K. Cameron, C.-H. Chang, J. Cortet, N. Eisenhauer, A. L. C. Franco et al. (2022b): Global monitoring of soil animal communities using a common methodology. – Soil Organisms 94: 55–68 [https://doi.org/10.25674/so94iss1id178].

Rooney, N. & K. S. McCann (2012): Integrating food web diversity, structure and stability. – Trends in Ecology & Evolution 27: 40–46 [https://doi.org/10.1016/j.tree.2011.09.001].

Roslin, T., B. Hardwick, V. Novotny, W. K. Petry, N. R. Andrew, A. Asmus, I. C. Barrio, Y. Basset, A. L. Boesing, T.C. Bonebrake et al. (2017): Higher predation risk for insect prey at low latitudes and elevations. – Science 356: 742–744 [https://doi.org/10.1126/science.aaj1631].

Rossi, J.-P., J. Mathieu & M. Grimaldi (2006): Soil macrofaunal biodiversity in Amazonian pastures: matching sampling with patterns. – Soil biology & Biochemistry 38: 2178–2187 [https://doi.org/10.1016/j.soilbio.2006.01.020].

Ryser, R., M. R. Hirt, J. Häussler, D. Gravel & U. Brose (2021): Landscape heterogeneity buffers biodiversity of simulated meta-food-webs under global change through rescue and drainage effects. – Nature Communications 12: 4716 [https://doi.org/10.1038/s41467-021-24877-0].

Schwarz, B., A. D. Barnes, M. P. Thakur, U. Brose, M. Ciobanu, P. B. Reich, R. L. Rich, B. Rosenbaum, A. Stefanski & N. Eisenhauer (2017): Warming alters energetic structure and function but not resilience of soil food webs. – Nature Climate Change 7: 895–900 [https://doi.org/10.1038/s41558-017-0002-z].

Shelomi, M. (2012): Where Are We Now? Bergmann’s Rule Sensu Lato in Insects. – American Naturalist 180: 511–519 [https://doi.org/10.1086/667595].

Smith, G. R., T. W. Crowther, N. Eisenhauer & J. van den Hoogen (2019): Building a global database of soil microbial biomass and function: a call for collaboration: A CALL FOR COLLABORATION. – Soil Organisms 91: 139–142 [https://doi.org/10.25674/so91iss3pp140].

Tedersoo, L., M. Bahram, S. Põlme, U. Kõljalg, N. S. Yorou, R. Wijesundera, L. V. Ruiz, A. M. Vasco-Palacios, P .Q. Thu, A. Suija et al. (2014): Global diversity and geography of soil fungi. – Science 346 [https://doi.org/10.1126/science.1256688].

Tedersoo, L., M. Bahram, M. Toots, A. G. Diédhiou, T. W. Henkel, R. Kjøller, M. H. Morris, K. Nara, E. Nouhra, K. G. Peay et al. (2012): Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Molecular – Ecology 21: 4160–4170 [https://doi.org/10.1111/j.1365-294X.2012.05602.x].

Tews, J., U. Brose, V. Grimm, K. Tielbörger, M.C. Wichmann, M. Schwager & F. Jeltsch (2004): Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. – Journal of Biogeography 31: 79–92 [doi:10.1046/j.0305-0270.2003.00994.x]

Thakur, M. P., H. R. P. Phillips, U. Brose, F. T. D. Vries, P. Lavelle, M. Loreau, J. Mathieu, C. Mulder, W. H. V. der Putten, M. C. Rillig et al. (2020): Towards an integrative understanding of soil biodiversity. – Biological Reviews 95: 350–364 [https://doi.org/10.1111/brv.12567].

Tsiafouli, M. A., E. Thébault, S. P. Sgardelis, P. C. de Ruiter, W. H. van derPutten, K. Birkhofer, L. Hemerik, F. T. de Vries, R. D. Bardgett, M. V. Brady et al. (2015): Intensive agriculture reduces soil biodiversity across Europe. – Global Change Biology 21: 973–985 [https://doi.org/10.1111/gcb.12752].

Tuma, J., P. Eggleton & T. M. Fayle (2020): Ant-termite interactions: an important but under-explored ecological linkage. – Biological Reviews 95: 555–572 [https://doi.org/10.1111/brv.12577].

van den Hoogen, J., S. Geisen, D. Routh, H. Ferris, W. Traunspurger, D. A. Wardle, R. G. M. de Goede, B. J. Adams, W. Ahmad, W. S. Andriuzzi et al. (2019): Soil nematode abundance and functional group composition at a global scale. – Nature 572: 194–198 [https://doi.org/10.1038/s41586-019-1418-6].

van Groenigen, J. W., I. M. Lubbers, H. M. J. Vos, G. G. Brown, G. B. De Deyn & K. J. van Groenigen (2014): Earthworms increase plant production: a meta-analysis. – Scientific Reports 4: 6365 [https://doi.org/10.1038/srep06365]. http://www.nature.com/articles/srep06365#supplementary-information

Wall, D.H., M. A. Bradford, M. G. St. John, J. A. Trofymow, V. Behan-Pelletier, D. E. Bignell, J. M. Dangerfield, W .J. Parton, J. Rusek, W. Voigt et al (2008): Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. – Global Change Biology 14: 2661–2677 [https://doi.org/10.1111/j.1365-2486.2008.01672.x].

Wardle, D. A., R. D. Bardgett, J. K. Klironomos, H. Setälä, W. H. van der Putten & D. H. Wall (2004): Ecological linkages between aboveground and belowground biota. Science 304: 1629–1633 [https://doi.org/10.1126/science.1094875].

Willig, M. R., D. M. Kaufman, R. D. Stevens (2003): Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology – Evolution and Systematics 34: 273–309 [https://doi.org/10.1146/annurev.ecolsys.34.012103.144032].

Wong, M. K. L., B. Guénard & O. T. Lewis (2019): Trait-based ecology of terrestrial arthropods. – Biological Reviews 94: 999–1022 [https://doi.org/10.1111/brv.12488].

Wood S. N. (2006): Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC Press.

Wright, D. H. (1983): Species-Energy Theory: An Extension of Species-Area Theory. – Oikos 41: 496 [https://doi.org/10.2307/3544109].

Xue, R., C. Wang, X. Liu & M. Liu (2022): Earthworm regulation of nitrogen pools and dynamics and marker genes of nitrogen cycling: A meta-analysis. – Pedosphere 32: 131–139 [https://doi.org/10.1016/S1002-0160(21)60063-2]

Downloads

Published

2022-08-01

How to Cite

Mathieu, J., Antunes, A. C., Barot, S., Bonato Asato, A. E. ., Bartz, M. L. C. ., Brown, G. G., Calderon-Sanou, I., Decaëns, T., Fonte, S. J., Ganault, P., Gauzens, B., Gongalsky, K. B., Guerra, C. A., Hengl, T., Lavelle, P., Marichal, R., Mehring, H., Peña-Venegas, C. P., Castro, D., Potapov, A., Thébault, E., Thuiller, W., Witjes, M., Zhang, C., & Eisenhauer, N. (2022). sOilFauna - a global synthesis effort on the drivers of soil macrofauna communities and functioning: WORKSHOP REPORT . SOIL ORGANISMS, 94(2), 111–126. https://doi.org/10.25674/so94iss2id282

Issue

Section

ARTICLES